Claim Missing Document
Check
Articles

Found 9 Documents
Search

SOFTWARE BIOFOR MOTION ANALYSIS UNTUK EVALUASI GERAK BIOMEKANIKA TENIS DENGAN TEKNIK PUKULAN FOREHAND Irawan, Ricko; Azam, Mahalul; Rahayu, Setya; Setyawati, Heny; Soedjatmiko, Soedjatmiko; Nurharsono, Tri; Priyono, Bambang; Nugroho, Anan; Afifi, Sesaria Nisa; Salsabila, Alif Mazida; Lestari, Sri; Zein, Ahmad
Bookchapter Pendidikan Universitas Negeri Semarang No. 7 (2024)
Publisher : Bookchapter Pendidikan Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.1529/kp.v1i7.189

Abstract

Modernisasi ilmu pengetahuan dan teknologi khususnya olahraga tenis lapangan sudah sangat pesat di negara lain. Indonesia masih sangat jauh ketinggalan dalam hal Ipteks. Banyak pelatih yang masih menganalisis dan evaluasi program latihan secara konvensional tanpa melibatkan ipteks, sehingga pelatih tidak dapat mengidentifikasi kebutuhan atlet. Belum adanya software di dunia pertenisan Indonesia yang dapat menganalisis gerak biomekanika dalam meningkatkan kualitas teknik secara otomatis serta lemahnya kecepatan pukulan forehand menjadi perhatian. Pelatih masih menganalisis gerak biomekanika dalam menghasilkan kecepatan pukulan tanpa di dukung ipteks, sehingga menyebabkan analisis tidak tepat dan akurat. Permasalahan gerak biomekanika tentunya tidak dapat diamati tanpa adanya alat bantu yang dapat merekam gerakan atlet secara menyeluruh. Alat bantu digunakan untuk mengevaluasi kesalahan gerak atlet dengan media yang lebih modern. Penelitian ini bertujuan mengembangkan aplikasi inovatif berbasis software. Software berupa aplikasi android yang terkoneksi otomatis pada sistem. Software diharapkan mampu menganalisis kebutuhan biomekanika dalam menghasilkan kecepatan pukulan forehand sehingga diharapkan dapat menghasilkan pukulan yang konsisten dan berdaya ledak tinggi. Dikembangkan alat ini dapat membantu pelatih meningkatkan potensi dan performa atletnya secara berjenjang dan berkesinambungan.
Segmentasi Objek Citra Ultrasonografi Terotomatisasi Menggunakan Metode Aktif Kontur Kombinatorial Nugroho, Anan; Sunarko, Budi; Wibawanto, Hari; Mulwinda, Anggraini; Fauzi, Anas; Oktaviyanti, Dwi; Savitri, Dina Wulung
Jurnal Teknologi dan Sistem Komputer [IN PRESS] Volume 11, Issue 1, Year 2023 (January 2023)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2023.14712

Abstract

Active Contour (AC) merupakan algoritme yang banyak digunakan dalam melakukan segmentasi dalam mengembangkan sistem Computer Aided Diagnosis (CAD) pada pencitraan USG. Namun metode yang berkembang masih bersifat interaktif yang menyebabkan human error serta adanya berbagai masalah akibat inhomogenitas pada citra Ultrasonografi (USG) seperti leakage, terjadinya false area serta local minima. Pada studi ini dikembangkan metode segmentasi objek otomatis pada citra USG untuk membantu radiolog dalam proses diagnosis yang efisien. Metode yang dikembangkan disebut Automatic Combinatorial Active Contour (ACAC) yang mengkombinasikan turunan simplifikasi model global region-based CV (Chan-Vese) dan improved-GAC (Geodesic Active Contour) untuk segmentasi lokal. Hasil studi dengan 50 dataset yang diuji coba yaitu didapatkannya nilai accuracy sebesar 98.83%, precission 95.26%, sensitivity 86.58%, specificity 99.63%, similarity 90.58%, dan IoU 82.87%. performa kuantitatif ini membuktikan bahwa metode ACAC layak diimplementasikan pada sistem CAD yang lebih efisien dan akurat.
IDENTIFIKASI KETEPATAN WAKTU STUDI MAHASISWA DENGAN ALGORITMA K-MEANS CLUSTERING SEBAGAI REKOMENDASI KEBIJAKAN AKADEMIK PERGURUAN TINGGI Firdaus, Agung Adi; Rismawan, Yudha Andriano; Setiyawan, Farhan Taufikurrahman; Abiaska, Arya Kresna; Nugroho, Anan
KLIK- KUMPULAN JURNAL ILMU KOMPUTER Vol 10, No 3 (2023)
Publisher : Lambung Mangkurat University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/klik.v10i3.538

Abstract

Perguruan tinggi mempunyai tugas melaksanakan pendidikan yang berkualitas. Ketepatan waktu studi merupakan salah satu aspek penting yang menjadi tolok ukur dalam keberhasilan perguruan tinggi. Oleh karena itu perguruan tinggi perlu menganalisis ketepatan waktu studi mahasiswa untuk membangun strategi pengembangan akademik yang lebih baik. Teknik analisis data yang digunakan adalah clustering menggunakan algoritma K-Means Clustering. Rumusan masalah penelitian adalah bagaimana penerapan dan apa saja pengetahuan yang didapatkan pada clustering ketepatan waktu studi mahasiswa. Prosedur dalam analisis data terdiri dari data understanding, studi literatur, data cleaning, data selection, data transformation, normalisasi data, clustering, data visualization serta pembahasan dan interpretasi hasil. Hasil yang diperoleh adalah terbagi 3 klaster ketepatan waktu studi yang terdiri dari cepat, tepat waktu, dan telat. Diperoleh pengetahuan bahwa klaster telat mempunyai frekuensi terbesar, diikuti dengan klaster cepat, dan terendah adalah klaster tepat waktu. Ketiga klaster tersebut didistribusikan persebarannya berdasarkan status kerja, UKM, organisasi, dan fakultas. Disimpulkan bahwa tidak terdapat hubungan dan perbedaan antara mahasiswa yang berkuliah sambil bekerja dan mahasiswa yang tidak bekerja. Tidak terdapat hubungan dan perbedaan antara mahasiswa yang tidak mengikuti UKM, mengikuti UKM 1, mengikuti UKM 2, mengikuti UKM 3, ataupun mengikuti UKM 4. Hasil berbeda ditunjukkan berdasarkan organisasi kampus, disimpulkan bahwa mengikuti organisasi dan tidak mengikuti organisasi mempunyai hubungan yang kuat dan perbedaan yang signifikan terhadap ketepatan waktu studi. Sedangkan berdasarkan asal fakultas, tidak terdapat hubungan dan perbedaan yang signifikan, namun klaster mahasiswa yang lulus tepat waktu dengan frekuensi paling sedikit adalah FISIP, FIKOM dan DKV.
Pengembangan Aplikasi Pose Detection untuk Asesmen Kemajuan Fisioterapi Pasien Pasca Stroke dari Jarak Jauh Febry Putra Rochim; Nugroho, Anan; Sukamta, Sri; Wafi, Ahmad Zein Al; Fathurrahman, Muhammad; Damayanti, Amelia; Wardah, Hildatul
JTIM : Jurnal Teknologi Informasi dan Multimedia Vol 5 No 4 (2024): February
Publisher : Puslitbang Sekawan Institute Nusa Tenggara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35746/jtim.v5i4.415

Abstract

Assessment has an important role in determining the diagnosis and subsequent treatment plan. In an effort to increase access and effectiveness of rehabilitation, this research aims to develop a mobile application that is able to report the results of post-stroke patient pose assessment remotely. Telemedicine approaches in post-stroke rehabilitation have become increasingly popular, allowing patients to access rehabilitation services remotely. This is especially beneficial for patients who live in remote areas or have limited mobility. Telemedicine also allows for real-time patient monitoring, allowing adjustments to rehabilitation plans as needed. The mobile app is designed to provide easy access to rehabilitation programs that can be tailored to individual patient needs. In addition to making access easier, this application is equipped with a monitoring feature that allows health professionals to follow patient progress in detail. Data collected from patients' daily exercise and activities provides valuable insight into their progress, which can be used in tailoring rehabilitation plans in real-time. The development of this mobile application technology has great potential to improve rehabilitation outcomes for post-stroke patients. Testing by three experts with two experts as healthy patients and stroke patients, as well as one patient who acts as a medical personel to monitor, shows that from the graph, healthy patients tend to be consistent. On the other hand, post-stroke patients tend to be inconsistent. These results indicate that this application is effective for identifying patient movements during the rehabilitation process. Although there are several obstacles, such as delays in predictions on some devices, this application has great potential to improve the quality of life of post-stroke patients. Thus, the development of a pose detection application for remotely assessing the progress of physiotherapy in post-stroke patients has great potential in improving rehabilitation outcomes. The app facilitates patient access to appropriate, personalized and effective care, while providing medical personnel with objective and accurate data for monitoring and adjusting rehabilitation plans. This is a significant step in advancing the care of post-stroke patients.
Internal content classification of ultrasound thyroid nodules based on textural features Nugroho, Anan; Nugroho, Hanung Adi; Setiawan, Noor Akhmad; Choridah, Lina
Communications in Science and Technology Vol 1 No 2 (2016)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.1.2.2016.25

Abstract

Ultrasound (US) is one of the best imaging modalities on thyroid identification. The suspicious thyroid is indicated in the existence of palpable nodules whose solid or cystic composition. Solid nodules have high possibility to be malignant than cystic. An effort to detect and classify the internal content of thyroid nodule has become challenge problem in radiology area. Operator dependence of ultrasound imaging makes it complicated due to missing interpretation among radiologists. Objective Computer Aided Diagnosis (CAD) was designed to solve it which works on texture analysis of histogram statistic, gray level co-occurrence matrice (GLCM) and gray level run length matrices (GLRLM). The fine-needle aspiration cytology (FNAC) is not needed because the textural pattern is significantly different between solid and cystic nodules.  Multi-layer perceptron (MLP) was adopted to do classification process for 72 US thyroid images yield an accuracy of 90.28%, the sensitivity of 87.80%, specificity of 93.55% and precision of 94.74%.
Analisis Arsitektur Jaringan Syaraf Tiruan-Multilayer Perceptron untuk Efektivitas Estimasi Beban Energi Listrik PT. PLN (Persero) UP3 Salatiga SAPUTRA, RONI; SUNARDIYO, SAID; NUGROHO, ANAN; SUBIYANTO, SUBIYANTO
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 11, No 3: Published July 2023
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v11i3.664

Abstract

ABSTRAKPT PLN (Persero) UP3 Salatiga merupakan perusahaan penyedia energi listrik enam kabupaten di Jawa Tengah. Agar energi listrik yang mengalir ke pelanggan handal dan ekonomis, penyesuaian antara supply dan demand penting untuk dilakukan. Hal ini bisa dilakukan dengan perencanaan operasi sistem tenaga listrik dalam bentuk estimasi beban energi listrik. Pada penelitian ini, estimasi dilakukan dengan jaringan syaraf tiruan-multilayer perceptron. Sejumlah variasi jumlah layer dan node pada arsitektur perceptron diuji-cobakan untuk mendapatkan performa estimasi yang terbaik. Dari penelitian ini, diperoleh arsitektur terbaik yaitu TRAINGDA 4 hidden layer dengan 20 node hidden layer, dengan nilai MAPE sebesar 2.79% tahap training, serta nilai MAPE sebesar 3.24% tahap testing. Hasil ini mengindikasikan bahwa metode jaringan syaraf tiruan-multilayer perceptron lebih akurat sebagai estimator beban energi listrik PT PLN (Persero) UP3 Salatiga.Kata kunci: estimasi, estimasi beban, energi listrik, multilayer perceptron ABSTRACTPT PLN (Persero) UP3 Salatiga is an electricity provider company for 6 districts in Central Java. To ensure reliable and economical electricity supply to customers, adjustment between supply and demand is important to be conducted. This can be achieved through planning of power system operation in the form of electricity load estimation. In this study, estimation was performed using artificial neural network-multilayer perceptron. Several variations of the number of layers and nodes in the perceptron architecture were tested to obtain the best estimation performance. From this study, the best architecture was obtained with TRAINGDA 4 hidden layers and 20 hidden layer nodes, resulting in MAPE value of 2.79% in the training phase and 3.24% in the testing phase. These results indicate that artificial neural network-multilayer perceptron method is more accurate as an estimator of electricity load for PT PLN (Persero) UP3 Salatiga.Keywords: estimation, load estimation, electrical energy, multilayer perceptron
Implementasi SMARCOS: Smart Water Conditioning System Berbasis Web-IoT di Balai Benih Ikan Kecamatan Mijen Semarang Nugroho, Anan; Subagja, Mona; Hidayat, Syahroni; Budiwirawan, Agung; Diyanasari, Ledi; Simanjuntak, Jhonatur Stheven; Wahyudi, Tri Agus; Fikri, Akmal
Journal of Community Development Vol. 6 No. 1 (2025): August
Publisher : Indonesian Journal Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47134/comdev.v6i1.1459

Abstract

Effective water quality management is crucial for fish hatcheries to ensure survival and productivity. At the Fish Hatchery Center (BBI) Cangkiran Mijen, water quality monitoring is still conducted manually, leading to unstable pond conditions. To improve monitoring efficiency, SMARCOS (Smart Water Conditioning System) was developed as a Web-IoT-based system for automated monitoring of water parameters such as pH, oxygen, and temperature. The program involved pond data collection, expert consultation, system design, testing, implementation, and partner training. Evaluation was conducted through satisfaction surveys and system performance monitoring. Results showed that SMARCOS effectively corrected water quality parameters automatically, enhanced monitoring efficiency, and provided easy access to information via an IoT-based website. Surveys indicated that partners were satisfied with the system’s usability. The adoption of IoT for water quality monitoring significantly improved the efficiency and accuracy of hatchery pond management. Training sessions also increased partner understanding of IoT technology. The success of SMARCOS demonstrates that IoT can be an innovative solution for fisheries modernization, with potential replication in other hatcheries to enhance productivity and efficiency in aquaculture.
Kinerja SVM yang Dioptimalkan dengan PSO Sebagai Metode Klasifikasi untuk Analisis Sentimen Media Sosial UNNES Janaah, Miftahul; Nugroho, Anan
JURNAL INFOTEL Vol 17 No 1 (2025): February 2025
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v17i1.1266

Abstract

The rapid growth of Big Data, particularly from social media platforms, presents organizations with vast opportunities for extracting valuable insights. For educational institutions like UNNES, sentiment analysis can be crucial for monitoring and enhancing public perception. This research explores the application of sentiment analysis using SVM optimized by PSO to improve classification accuracy. Although SVM is widely known for its effectiveness in linearly separable data, it struggles with nonlinear data. By employing kernel functions and optimizing hyperparameters through PSO, this study aims to improve SVM's performance. The results show that the optimized SVM model with the RBF kernel and PSO achieved an accuracy of 82.05%, compared to 80.96% using standard SVM, demonstrating a 1.09% improvement. These findings indicate that PSO significantly enhances the efficiency and accuracy of SVM models in sentiment analysis, making it a powerful tool for analyzing social media data in educational contexts.
The Performance of Water Irrigation Control using Fuzzy-GA Approach Soambaton, Muhamad Febrian; Nugroho, Anan
Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering) Vol. 14 No. 5 (2025): October 2025
Publisher : The University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jtepl.v14i5.1582-1592

Abstract

Irrigation in agriculture uses around 70% of freshwater resources globally, but traditional systems often result in ineffective utilization through rigid schedules or skewed decision-making. This article proposes an improved fuzzy logic controller developed using a Genetic Algorithm (GA) to optimize soil moisture control. The GA optimizes the fuzzy membership functions within 50 generations to enhance irrigation efficiency. Simulation and experimental results show that the fuzzy-GA controller maintained soil moisture at values close to the desired value of 25.1% with lower error rates, saving 858 mL more water than manual irrigation and 16 mL more than conventional fuzzy control. The results confirm the potential of fuzzy-GA systems in optimizing irrigation efficiency and ensuring sustainable use of water in agriculture. The fuzzy-genetic algorithm (Fuzzy-GA) improves fuzzy logic control by maintaining soil moisture at a target level of 25.1%, with a very low steady-state error of 0.03783%.