Dengue fever is a disease caused by dengue virus transmitted through Aedes aegypti mosquitoes. This study discusses the SI1I2RS epidemic model in the spread of dengue fever, assuming that people with this disease can experience severe and mild symptoms. The analysis in this research aims to determine the stability of the equilibrium point, primary reproduction number, parameter sensitivity, and numerical simulation to determine the effect of parameters on the dynamics of the spread of dengue fever. The results of this analysis show two equilibrium points, namely the disease-free equilibrium point, which is locally asymptotically stable when R0 1 and the endemic point, which is locally asymptotically stable when R0 1. Numerical simulations show that the change in the parameter of the average bite of individual mosquitoes in humans has a significant effect on the primary reproductive number where when the moderate acidity of individual mosquitoes in humans is 0.05 and the contact rate of disease transmission from infected mosquitoes to susceptible humans is 0.025, it can suppress the spread of dengue fever. Therefore, individuals must maintain cleanliness and take precautions against the spread of dengue fever.
Copyrights © 2024