The development of artificial intelligence (AI)-based facial recognition technology has become a significant research topic in the field of computing and security. At the Indonesian Palm Oil Institute (ITSI), AI-based facial recognition is introduced to students to improve their skills in developing AI-based applications. This study aims to implement and test a facial recognition system using a Python program by utilizing a dataset generated independently. This research method involves several stages, namely collecting ITSI students' facial data, data processing, creating a facial recognition model using a machine learning algorithm, and evaluating model performance. The dataset used was developed through a live shooting session involving active student participation. The facial recognition model was trained using a convolutional neural network (CNN) algorithm that was optimized to improve accuracy. The results of the study showed that the developed model was able to achieve high facial recognition accuracy, with an average accuracy rate of 92%. The discussion includes an analysis of factors that affect accuracy, such as variations in lighting and shooting angles, as well as the potential use of this technology in a campus environment, including for attendance and security purposes. The conclusion of this study shows that the implementation of AI-based facial recognition can be effectively applied in an academic environment, as well as providing students with practical experience in developing and testing AI applications. This study also opens up opportunities for further research on improving the performance of facial recognition systems and their application in various real-world scenarios.
                        
                        
                        
                        
                            
                                Copyrights © 2024