Air merupakan kebutuhan yang sangat penting bagi mahkluk hidup termasuk manusia, namun tidak semua air aman untuk dikonsumsi, sehingga perlu adanya identifikasi terkait kualitas air yang baik untuk dikonsumsi. Oleh karena itu sangat penting mengembangkan strategi yang tepat untuk memprediksi atau meramlkan kualitas air yang dapat dikonsumsi. Pada penelitian ini akan menggunakan perhitungan Decission Tree dan K-Nearest Neigbors untuk klasifikasi sifat air yang layak dikonsumsi. Kualitas air yang baik sangat penting untuk kesehatan manusia, dan prediksi yang akurat dapat membantu orang memilih jumlah air yang tepat untuk diminum. Kedua algoritma ini akan dilakukan perbandingan pada proses klasifikasi data untuk mengetahui metode mana yang paling akurat, dilihat dari tingkat akurasi yang paling tinggi. Hasil penelitian ini menunjukkan metode Decision Tree sebesar 75.69%, sedangkan metode K-nearest Neighbors memiliki tingkat akurasi sebesar 79,39%, yang merupakan metode yang paling baik untuk klasifikasi data
Copyrights © 2024