Artikel ini mengeksplorasi penggunaan algoritma K-Nearest Neighbors (K-NN) untuk klasifikasi pasien gagal jantung berdasarkan data klinis dari Kaggle. Proses penelitian mencakup pra-pemrosesan data, normalisasi fitur, pemilihan parameter k optimal melalui cross-validation, dan evaluasi model dengan metrik akurasi, precision, recall, dan F1-score. Hasil menunjukkan bahwa algoritma K-NN dengan parameter k=7 optimal mampu mengklasifikasikan kematian pasien dengan akurasi yang memadai sebesar 84%. Penemuan ini menunjukkan potensi besar dari penggunaan K-NN dalam mendukung pengambilan keputusan klinis dan meningkatkan diagnosis kematian akibag gagal jantung. Implementasi data mining dengan K-NN menawarkan pendekatan yang efektif untuk analisis medis, berkontribusi pada peningkatan kualitas perawatan pasien.
Copyrights © 2024