Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 8 No. 1 (2024): Articles Research Volume 8 Issue 1, January 2024

Determining The Optimal Number of K-Means Clusters Using The Calinski Harabasz Index and Krzanowski and Lai Index Methods for Groupsing Flood Prone Areas In North Sumatra

Syahputri, Ziana (Unknown)
Sutarman (Unknown)
Machrani Adi Putri Siregar (Unknown)



Article Info

Publish Date
13 Jan 2024

Abstract

The k-means algorithm is a partitional clustering method. K-Means has several advantages, including being easy to implement, having a high level of convergence and producing denser clusters. Meanwhile, the drawback is that it is difficult to determine the optimal number of clusters. The K-Means method will be used to solve problems in areas prone to flood disasters in North Sumatra. This research aims to find the optimal number of clusters with the Calinski Harabasz Index and Krzanowski And Lai Index based on the Cluster Tightness Measure (CTM) value. There are eleven variables used in this research. Based on the research results, it was concluded that the CTM CH result of 0.376 was smaller than the CTM KL of 0.7843. So it can be said that determining the optimal number of clusters using CH with k = 6 is better than KL with k = 2.

Copyrights © 2024






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...