IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 2: June 2024

Deep learning for audio signal-based tempo classification scenarios

Muljono, Muljono (Unknown)
Nurtantio Andono, Pulung (Unknown)
Ayu Wulandari, Sari (Unknown)
Al Azies, Harun (Unknown)
Naufal, Muhammad (Unknown)



Article Info

Publish Date
01 Jun 2024

Abstract

This article explains how to determine the tempo of the kendhang, an Indonesian traditional melodic instrument. This research presents novelty as technological research related to gamelan instruments, which has rarely been achieved thus far, through the introduction of kendhang tempo types through the sounds produced, with the hope of creating an automatic system that can recognize the kendhang tempo during a gamelan performance. The testing in this work will categorize the tempo of kendhang into three categories: slow, medium, and fast, utilizing one of the two scenario models proposed, mel frequency cepstral coefficients (MFCC) and convolutional neural network (CNN) in the first scenario, and mel spectrogram and CNN in the second. Kendhang's original audio data, which was captured in real time and later enhanced, makes up the data set. The model 1 scenario, which entails feature extraction using MFCC and classification using the CNN classification approach, is the best scenario in this research, based on the experimental results. When compared to the other suggested modeling scenarios, model 1 has a level of 97%, an average accuracy, and a gain value of 96.67%, making it a solid assistant in terms of kendhang's good tempo recognition accuracy.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...