Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Vol 9, No 1 (2024): Edisi Februari

Pemilihan Algoritma Terbaik Untuk Klasifikasi Jenis E-Mail dengan Metode TF-IDF

Fitria, Denisa (Unknown)
Cahyana, Yana (Unknown)
Sulistya, Dwi (Unknown)
Baihaqi, Kiki Ahmad (Unknown)



Article Info

Publish Date
27 Feb 2024

Abstract

Spam emails, sent en masse to numerous addresses, are a major annoyance. To combat this, effective filters are necessary, such as classification to separate spam from non-spam. This can be achieved through an anti-spam model utilizing text mining like TF-IDF. Using the KDD process, a study analyzed a dataset of 6046 entries, split 77.2% non-spam and 22.8% spam. Logistic Regression showed the best accuracy at 98%, outperforming Decision Tree (59%) and Support Vector Machine (95%). Thus, Logistic Regression emerged as the optimal algorithm for email classification.

Copyrights © 2024






Journal Info

Abbrev

jurasik

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

JURASIK adalah jurnal yang diterbitkan oleh LPPM STIKOM Tunas Bangsa Pematangsiantar yang bertujuan untuk mewadahi penelitian di bidang Sistem Informasi dan Teknik Informatika. JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika) adalah jurnal ilmiah dalam ilmu komputer dan informasi yang ...