JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI
Vol 11 No 3 (2024): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)

The CLASSIFICATION OF STROKE PREDICTION USING THE SUPPORT VECTOR MACHINE (SVM) METHOD

Wulandari, Erika (Unknown)
Witanti, Arita (Unknown)



Article Info

Publish Date
13 Sep 2024

Abstract

Stroke is a dangerous disease that can take someone's life, regardless of age. Several factors can cause a stroke, such as diabetes, hypertension, smoking, obesity, and other stroke factors. Therefore, understanding stroke is crucial for everyone to anticipate and prevent this disease. This stroke classification prediction research aims to determine the results of classification and the accuracy level of the data collected through the Support Vector Machine (SVM) method and SMOTE technique. Support Vector Machine (SVM) is an algorithm used to map information with minimal risk by separating hyperplanes. Before the testing phase, data balancing is also performed first using the SMOTE technique to ensure more accurate data processing. This research uses a dataset of 5,110 data points with 12 records. The classification results using the SVM method with the SMOTE technique yielded a good level of accuracy. Specifically, this research uses two ratios: 80:20 with an accuracy result of 85.45% and 70:30 with an accuracy result of 85.24%.

Copyrights © 2024






Journal Info

Abbrev

jatisi

Publisher

Subject

Computer Science & IT

Description

JATISI bekerja sama dengan IndoCEISS dalam pengelolaannya. IndoCEISS merupakan wadah bagi para ilmuwan, praktisi, pendidik, dan penggemar dalam bidang komputer, elektronika, dan instrumentasi yang menaruh minat untuk memajukan bidang tersebut di Indonesia. JATISI diterbitkan 2 kali dalam setahun ...