Bulletin of Electrical Engineering and Informatics
Vol 13, No 2: April 2024

The deep convolutional networks for the classification of multi-class arrhythmia

Akbar, Muhamad (Unknown)
Nurmaini, Siti (Unknown)
Partan, Radiyati Umi (Unknown)



Article Info

Publish Date
01 Apr 2024

Abstract

An arrhythmia is an irregular heartbeat. Many researchers in the AI field have carried out the automatic classification of arrhythmias, and the issue that has been widely discussed is imbalanced data. A popular technique for overcoming this problem is the synthetic minority oversampling technique (SMOTE) technique. In this paper, the author adds some sampling of data obtained from other datasets into the primary dataset. In this case, the main dataset is the Massachusetts Institute of Technology–Beth Israel Hospital (MIT-BIH) arrhythmia database and an additional dataset from the MIT-BIH supraventricular arrhythmia database. The classification process is carried out with one-dimensional convolutional neural network model (1D-CNN) to perform multiclass and subject-class advancement of medical instrumentation (AAMII) classifications. The results obtained from this study are an accuracy of 99.10% for multiclass and 99.25% for subject-class.

Copyrights © 2024






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...