Studi ini berupaya untuk mengevaluasi dan mengukur tingkat aktivitas fisik anak usia dini sejalan dengan pedoman Organisasi Kesehatan Dunia (WHO), menggunakan teknik klasifikasi machine learning pada data yang diperoleh dari kuesioner. Menyadari pentingnya aktivitas fisik di tahun-tahun formatif, penelitian ini bertujuan untuk menilai kepatuhan terhadap ambang batas aktivitas yang direkomendasikan WHO pada anak usia dini. Metodologi ini mengintegrasikan kuesioner komprehensif yang mengungkap beragam aspek pola aktivitas fisik anak usia dini, yang mencakup durasi, intensitas, dan jenis aktivitas yang dilakukan dalam berbagai situasi. Sebanyak 99 orang tua siswa melaporkan aktivitas keseharian anak mereka yang berusia 4 sampai 5 tahun (M = 4,59±0,41). Dengan memanfaatkan model klasifikasi algoritma machine learning decision tree, penelitian ini memproses data yang dikumpulkan untuk membedakan pola dan mengklasifikasikan tingkat aktivitas berdasarkan kriteria WHO. Hasilnya menunjukkan, indikator waktu aktivitas, waktu tidur dan waktu bermain menjadi indikator penentu decision tree dalam mengklasifikasi kepatuhan anak usia dini terhadap rekomendasi aktivitas fisik WHO. Lebih lanjut, machine learning decision tree sangat efektif dalam mengevaluasi dan mengklasifikasikan kepatuhan aktivitas fisik anak usia dini dengan performa akurasi 90%. Efektivitas pendekatan machine learning decision tree dalam mengevaluasi dan mengkategorikan tingkat aktivitas fisik anak usia dini secara akurat, menyoroti bidang-bidang potensial untuk intervensi dan strategi yang ditargetkan untuk meningkatkan kepatuhan terhadap aktivitas fisik yang direkomendasikan oleh WHO. Metodologi ini menawarkan instrumen yang menjanjikan bagi para profesional kesehatan, pembuat kebijakan, dan pendidik untuk lebih memahami dan mengatasi perilaku aktivitas fisik anak usia dini, sehingga berkontribusi terhadap promosi gaya hidup sehat sejak usia dini.
Copyrights © 2024