Dalam era digital saat ini, pemanfaatan machine learning dalam perdagangan Forex menjadi semakin relevan, terutama untuk meningkatkan akurasi prediksi nilai tukar mata uang. Penelitian ini bertujuan untuk mengeksplorasi penerapan machine learning, khususnya model Gradient Boosting Machine (GBM), yang diintegrasikan dengan indikator teknikal sebagai metode untuk meningkatkan prediksi mata uang Forex. Metode penelitian ini melibatkan penggunaan indikator teknikal utama seperti Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI), dan Bollinger Bands, yang diintegrasikan ke dalam model GBM untuk memprediksi pergerakan harga. Hasil dari penelitian ini menunjukkan bahwa model GBM yang diintegrasikan dengan indikator teknikal signifikan meningkatkan akurasi, presisi, recall, dan nilai F1 dibandingkan dengan model baseline. Temuan ini menegaskan bahwa kombinasi antara machine learning dan analisis teknikal menyediakan pendekatan yang lebih efektif dan adaptif dalam prediksi pasar Forex.
Copyrights © 2022