Techno.Com: Jurnal Teknologi Informasi
Vol. 23 No. 3 (2024): Agustus 2024

Penggunaan Random Forest dan Analisis Perilaku untuk Prediksi Serangan DDoS dalam Lingkungan Cloud Computing

Prayogi, Andi (Unknown)
Pane, Muhammad Akbar Syahbana (Unknown)
Dian, Rahmad (Unknown)
Siregar, Ratu Mutiara (Unknown)
Sugianto, Raden Aris (Unknown)
Simbolon, Hasanal Fachri Satia (Unknown)



Article Info

Publish Date
23 Aug 2024

Abstract

Dalam dunia komputasi awan yang semakin berkembang, ancaman serangan Distributed Denial of Service (DDoS) menjadi isu yang sangat krusial. Penelitian ini bertujuan untuk mengembangkan dan mengimplementasikan model prediksi serangan DDoS menggunakan algoritma Random Forest dan analisis perilaku jaringan. Dataset CICIDS2017 digunakan sebagai sumber data utama untuk melatih dan menguji model prediksi yang dikembangkan. Pemilihan algoritma Random Forest didasarkan pada kemampuannya yang tinggi dalam menangani data besar dan kompleks serta kemampuannya dalam mengenali pola anomali yang sering menjadi indikasi serangan siber. Hasil pengujian menunjukkan bahwa model ini mencapai akurasi yang signifikan dengan precision sebesar 97,8%, recall sebesar 98,2%, dan F1-score sebesar 98,0%. Analisis perilaku jaringan yang diterapkan, melibatkan fitur-fitur dinamis seperti waktu antar paket (Inter-Arrival Time/IAT), ukuran rata-rata segmen, dan jumlah paket per detik, yang terbukti efektif dalam meningkatkan kemampuan deteksi model. Implementasi model dalam lingkungan komputasi awan menunjukkan bahwa metode ini dapat diintegrasikan dengan sistem deteksi intrusi (Intrusion Detection Systems/IDS) yang sudah ada untuk memberikan lapisan perlindungan tambahan terhadap serangan DDoS. Berdasarkan hasil yang diperoleh, penelitian ini merekomendasikan penggunaan kombinasi algoritma Random Forest dan analisis perilaku jaringan sebagai solusi yang efektif untuk mendeteksi serangan DDoS dalam lingkungan komputasi awan. Penelitian lanjutan disarankan untuk mengembangkan dan menguji model dengan dataset yang lebih beragam serta mengoptimalkan algoritma untuk meningkatkan performa deteksi.   Kata kunci: Random Forest, DDoS, Cloud Computing

Copyrights © 2024






Journal Info

Abbrev

technoc

Publisher

Subject

Computer Science & IT Engineering

Description

Topik dari jurnal Techno.Com adalah sebagai berikut (namun tidak terbatas pada topik berikut) : Digital Signal Processing, Human Computer Interaction, IT Governance, Networking Technology, Optical Communication Technology, New Media Technology, Information Search Engine, Multimedia, Computer Vision, ...