International Journal of Basic and Applied Science
Vol. 13 No. 2 (2024): Sep: Basic and Applied Science

Data-driven corporate growth: A dynamic financial modelling framework for strategic agility

Sihotang, Hengki Tamando (Unknown)
Vinsensia, Desi (Unknown)
Riandari, Fristi (Unknown)
Chandra, Suherman (Unknown)



Article Info

Publish Date
30 Sep 2024

Abstract

This research aimed to develop a Dynamic Financial Growth Model (DFGM) to enhance corporate growth by promoting strategic agility through data-driven decision-making. The main objective was to optimize corporate value by integrating real-time data, dynamic decision-making, risk management, and scenario analysis. The research employed a mathematical modelling framework that combined predictive analytics, real options theory, and scenario-based optimization to represent dynamic corporate financial decisions. The numerical example demonstrated how the model adjusts strategic decisions in response to changes in market data and evaluates corporate value under optimistic, pessimistic, and baseline scenarios. The main results indicated that the DFGM is effective in optimizing corporate value by allowing for continuous adjustments and strategic flexibility, distinguishing itself from traditional static financial models that lack real-time adaptability. The findings highlighted the value of incorporating risk constraints and scenario analysis, resulting in a balanced approach that manages both growth and uncertainty. However, the study identified limitations, including the need for empirical validation, more complex predictive analytics, and accounting for behavioral factors affecting decision-making. The conclusion emphasizes that the DFGM provides an adaptable and data-driven framework that enhances corporate strategic agility, making it a valuable tool for managing growth in rapidly changing environments, while also suggesting future research to refine the model's practical application

Copyrights © 2024






Journal Info

Abbrev

ijobas

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Physics

Description

International Journal of Basic and Applied Science provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. ...