JURNAL SISTEM INFORMASI BISNIS
Vol 14, No 4 (2024): Volume 14 Nomor 4 Tahun 2024

Analisis Sentimen Ulasan Wisatawan Terhadap Alun-Alun Kota Batam: Perbandingan Kinerja Metode Naive Bayes dan Support Vector Machine

Friadi, John (Unknown)
Kurniawan, Dwi Ely (Unknown)



Article Info

Publish Date
09 Oct 2024

Abstract

Batam City, as a rapidly developing tourism destination in Indonesia, continues to strive to enhance the potential of its tourist attractions to attract more visitors. The assessment of reviews from tourists is crucial in identifying necessary development measures to improve the quality of tourist attractions. This research aims to analyze the sentiment of reviews for the Alun-Alun Kota Batam tourist destination by leveraging data from Google Maps. Two classification methods, Naive Bayes and Support Vector Machine, are employed for sentiment analysis, and their performances are compared. From 1140 collected reviews, the data is categorized into three labels: positive, negative, and neutral. The research results indicate that the Support Vector Machine method achieves higher accuracy (94%) compared to Naive Bayes (83%). This study contributes insights into visitor sentiments towards Alun-Alun Kota Batam, with implications for policy development and more effective actions in enhancing local tourism appeal.

Copyrights © 2024






Journal Info

Abbrev

jsinbis

Publisher

Subject

Computer Science & IT Economics, Econometrics & Finance

Description

JSINBIS merupakan jurnal ilmiah dalam bidang Sistem Informasi bisnis fokus pada Business Intelligence. Sistem informasi bisnis didefinisikan sebagai suatu sistem yang mengintegrasikan teknologi informasi, orang dan bisnis. SINBIS membawa fungsi bisnis bersama informasi untuk membangun saluran ...