Jurnal Informatika dan Teknik Elektro Terapan
Vol 12, No 3S1 (2024)

GWO-SVM: AN APPROACH TO IMPROVING SVM PERFORMANCE USING GREY WOLF OPTIMIZER IN INTELLECTUAL DISABILITY CLASSIFICATION

Afifudin, Muhammad (Unknown)
Junaidi, Achmad (Unknown)
Sihananto, Andreas Nugroho (Unknown)
Fithriyah, Izzatul (Unknown)



Article Info

Publish Date
12 Oct 2024

Abstract

 Intellectual disability (ID) is a neurodevelopmental disorder that requires early and accurate diagnosis. This study aims to improve the efficiency of ID diagnosis using a machine learning approach. A Support Vector Machine (SVM) model optimized with Grey Wolf Optimizer (GWO) was developed and trained using data from questionnaires completed by 101 families/guardians of ID patients at RSUD Dr. Soetomo Surabaya. The features used include family history, cognitive abilities, and adaptive behaviors. The results showed that the GWO-SVM model achieved an accuracy of 95% in classifying ID patients, an improvement of 5% compared to the conventional SVM. The GWO algorithm successfully optimized the parameters in SVM, resulting in a model with the best performance. These findings indicate the potential of GWO-SVM as an effective and efficient tool for assisting in the diagnosis of ID.

Copyrights © 2024






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...