Building of Informatics, Technology and Science
Vol 6 No 3 (2024): December 2024

Perbandingan Performa Algoritma NBC, C4.5, dan KNN dalam Analisis Sentimen Masyarakat terhadap Krisis Petani Muda pada Media Sosial Facebook

Nurkholis, Nurkholis (Unknown)
Permana, Inggih (Unknown)
Salisah, Febi Nur (Unknown)
Mustakim, Mustakim (Unknown)
Afdal, M (Unknown)



Article Info

Publish Date
03 Dec 2024

Abstract

In Indonesia, young farmers face various challenges and crises that hinder the growth and sustainability of the agricultural sector. They face obstacles such as lack of access to capital, limited technology, climate change, and low selling prices for their crops. In addition, they also often face problems in obtaining accurate and relevant information in an effort to facilitate better decision-making in agricultural businesses, so that the interest of young people today to become farmers is decreasing. The study aims to Compare the Performance of NBC, C4.5, and KNN Algorithms in the Analysis of Public Sentiment towards the Young Farmer Crisis on Facebook Social Media. The application of the K-Fold Cross Validation method is (K = 10). Sentiment analysis is carried out with 3 labels (positive, negative, and neutral). The data used in making the classification model (data from preprocessing the stemming column) using (Google Colab) amounted to 4,878 data with Positive sentiment of 43.13% (2,104), Neutral 39.59% (1,931), Negative 17.28% (843) from the initial data without nested comments, which is 4,981 and the total number of Facebook data is 2,900 likes, 6,700 comments, and 3.3 million viewers. The accuracy of the NBC algorithm is 57.32%, the C4.5 algorithm is 98.42%, and the KNN algorithm (K = 19) is 97.33%. It can be concluded that the results of the comparison of the performance of the three algorithms using (Rapidminer10.3), the C4.5 algorithm gets a higher accuracy of 98.42% and is superior because it produces a decision tree.

Copyrights © 2024






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...