Timun merupakan salah satu komoditas pertanian yang rentan terhadap penurunan kualitas akibat proses pembusukan. Klasifikasi timun segar dan busuk secara manual dapat memakan waktu dan tidak konsisten, sehingga diperlukan metode otomatis yang lebih efisien. Tujuan utama dari penelitian ini adalah untuk mengimplementasi sistem klasifikasi otomatis berbasis pengolahan citra dalam mengklasifikasikan timun segar dan timun busuk berdasarkan fitur visual seperti warna, tekstur, dan bentuk, guna meningkatkan efisiensi dan konsistensi dalam proses seleksi kualitas timun. Metode yang diterapkan meliputi pengolahan citra dengan konversi dari ruang warna RGB ke LAB untuk memisahkan kecerahan dan warna. Algoritma K-Means Clustering berfungsi untuk mengelompokkan citra ke dalam dua cluster, yaitu timun segar dan timun busuk. Data yang digunakan mencakup 50 citra untuk pengujian, yang terdiri dari 25 timun segar dan 25 timun busuk. Hasil penelitian ini menunjukkan bahwa metode ini berhasil mengklasifikasikan timun masak dan timun busuk dengan tingkat akurasi 97% di mana 49 dari 50 citra teridentifikasi dengan benar. Metode K-Means Clustering terbukti efektif dan akurat dalam menentukan jenis timun masak dan timun busuk.
                        
                        
                        
                        
                            
                                Copyrights © 2024