The logistical challenges in rural areas, which often face limited infrastructure, varied terrains, and dispersed populations, often lead to inefficient and costly delivery systems. Recent developments in Unmanned Aerial Vehicle (UAV) technology offer a theoretical framework for overcoming these challenges. This research proposes a comprehensive pattern language specifically designed for multi-UAV logistics operations in rural settings. The proposed system integrates critical components such as LiDAR-based map generation, altitude information storage, partial goal estimation, and collision avoidance into a unified framework. Unlike existing research that typically focuses on isolated aspects like route optimization or payload management, this system features an advanced path planning algorithm capable of real-time environmental assessment and direction-aware navigation. Focus group discussions with logistics experts from Talaud Island, North Sulawesi, Indonesia informed the design and refinement of the proposed patterns, ensuring that they address the practical needs of rural logistics. Our analysis suggests that this system offers a theoretical foundation for significantly improving the efficiency, reliability, and sustainability of delivering essential goods and services to rural areas, thereby supporting equitable development and improving the quality of life in these communities. While no empirical data is presented, the framework serves as a scalable foundation for future implementations of UAV-based rural logistics systems.
Copyrights © 2025