This study evaluates the performance of various path planning algorithms for multi-UAV systems in dynamic and cluttered environments, focusing on critical metrics such as path length, path smoothness, collision avoidance, and computational efficiency. We examined several algorithms, including A*, Genetic Algorithm, Modified A*, and Particle Swarm Optimization (PSO), using comprehensive simulations that reflect realistic operational conditions. Key evaluation metrics were quantified using standardized methods, ensuring the reproducibility and clarity of the findings. The A* Path Planner demonstrated efficiency by producing the shortest and smoothest paths, albeit with minor collision avoidance limitations. The Genetic Algorithm emerged as the most robust, balancing path length, smoothness, and collision avoidance, with zero violations and high feasibility. Modified A* also performed well but exhibited slightly less smooth paths. In contrast, algorithms like Cuckoo Search and Artificial Immune System faced significant performance challenges, especially in adapting to dynamic environments. Our findings highlight the superior performance of the Genetic Algorithm and Modified A* under these specific conditions. We also discuss the potential for hybrid approaches that combine the strengths of these algorithms for even better performance. This study's insights are critical for practitioners looking to optimize multi-UAV systems in challenging scenarios.