bit-Tech
Vol. 7 No. 2 (2024): bit-Tech

Klasifikasi Sentimen Komentar YouTube dengan NLP pada Debat Pilkada Banten 2024

Prastyo, Doni (Unknown)
Irawan, Dede (Unknown)
Mursyidin, Imam Halim (Unknown)



Article Info

Publish Date
27 Dec 2024

Abstract

Penelitian ini menganalisis sentimen publik terhadap 1.729 komentar YouTube pada debat Pilkada Banten 2024 menggunakan teknik Natural Language Processing (NLP). Sentimen diklasifikasikan ke dalam tiga kategori: positif, negatif, dan netral, untuk memahami persepsi masyarakat terhadap kandidat dan isu politik. Hasil analisis menunjukkan bahwa 49% komentar bersentimen positif, sebagian besar mendukung kandidat Airin yang dinilai berpengalaman, memiliki integritas, dan rekam jejak yang baik. Komentar seperti “Airin pasti menang” dan “Airin pemimpin terbaik” mendominasi diskusi. Sebaliknya, 35% komentar bersentimen negatif lebih banyak mengkritik kandidat lain, terutama terkait isu sensitif seperti dugaan korupsi. Adapun 16% komentar bersentimen netral memberikan observasi objektif, mengajukan pertanyaan, atau membahas aspek teknis debat.Model klasifikasi sentimen menggunakan algoritma Support Vector Machines (SVM) dan Naïve Bayes. SVM menunjukkan performa lebih baik dalam mengklasifikasi sentimen positif dan negatif, tetapi kedua model memiliki kelemahan dalam menangani komentar netral. Tantangan utama yang dihadapi adalah ambiguitas bahasa, ironi, dan sarkasme yang sering muncul dalam diskusi online. Untuk mengatasi hal ini, penelitian merekomendasikan penggunaan model pembelajaran mendalam seperti BERT atau transformer lainnya. Model ini diharapkan dapat memahami konteks bahasa yang lebih kompleks, meningkatkan akurasi klasifikasi terutama pada komentar netral. Visualisasi data, termasuk word cloud dan grafik distribusi sentimen, memberikan wawasan tambahan tentang tema utama yang dibahas, seperti integritas kandidat dan isu politik lokal. Penelitian ini memberikan kontribusi penting dalam memahami opini publik terhadap kandidat dalam Pilkada.

Copyrights © 2024






Journal Info

Abbrev

bt

Publisher

Subject

Computer Science & IT

Description

The bit-Tech journal was developed with the aim of accommodating the scientific work of Lecturers and Students, both the results of scientific papers and research in the form of literature study results. It is hoped that this journal will increase the knowledge and exchange of scientific ...