OKTAL : Jurnal Ilmu Komputer dan Sains
Vol 3 No 09 (2024): OKTAL : Jurnal Ilmu Komputer Dan Sains

Tinjauan Komparatif Klasifikasi Penyakit Stroke Berdasarkan Fitur Medis Menggunakan Random Forest

Anggarini Puspita Rarasati (Unknown)
Deytizsa Putri Nur Azizah (Unknown)
Puput Arie Sugiyanto (Unknown)
Arif Suryadin (Unknown)



Article Info

Publish Date
25 Nov 2024

Abstract

Stroke is a leading cause of disability and mortality, requiring early prediction and diagnosis to improve patient care quality. One widely used algorithm in this classification is Random Forest, known for its advantages in processing complex data and yielding high accuracy. This study aims to conduct a comparative review of Random Forest applications for stroke classification based on medical features. A comparative analysis is performed across several scholarly journals to assess the algorithm’s effectiveness, accuracy, and performance under various parameter settings and data processing techniques. The results of this study are expected to provide insights into the different implementations of Random Forest in stroke classification and identify potential areas for further research to optimize this method. 

Copyrights © 2024






Journal Info

Abbrev

oktal

Publisher

Subject

Astronomy Chemistry Computer Science & IT Electrical & Electronics Engineering Social Sciences

Description

1. Komputasi Lunak, 2. Sistem Cerdas Terdistribusi, Manajemen Basis Data, dan Pengambilan Informasi, 3. Komputasi evolusioner dan komputasi DNA/seluler/molekuler, 4. Deteksi kesalahan, 5. Sistem Energi Hijau dan Terbarukan, 6. Antarmuka Manusia, 7. Interaksi Manusia-Komputer, 8. Hibrida dan ...