Diabetes can lead to heart attacks, kidney failure, blindness, and increased risk of death. This research was conducted with the aim of classifying a diabetes risk dataset. In this context, performance comparison was carried out on three supervised learning algorithms: K-Nearest Neighbor, Naive Bayes, and Random Forest, against a dataset containing information on specific indicators related to diabetes risk. Additionally, this study also aimed to evaluate the accuracy comparison of the results produced by these three algorithms. The results of this research show that Random Forest performs very well in detecting diabetes, prediabetes, and non-diabetes, with high precision, recall, and F1-score levels. Meanwhile, although the results are still below Random Forest, both Naive Bayes and K-NN still demonstrate significant performance, especially regarding prediabetes cases. In conclusion, from the comparison results, the Random Forest algorithm shows the highest accuracy level at 99%, followed by K-Nearest Neighbor with an accuracy of 85%, while Naive Bayes has the lowest accuracy rate of 74%. This research indicates that the Random Forest algorithm excels in classifying data compared to the other two algorithms.
                        
                        
                        
                        
                            
                                Copyrights © 2025