Jurnal Sistem Cerdas
Vol. 7 No. 3 (2024)

Image Classification of Seasoning Package Completeness in Noodle Products Using WEKA Analysis: Klasifikasi Citra Kelengkapan Paket Bumbu Pada Produk Mie Menggunakan Analisis WEKA

Rendi Priyatna (Unknown)



Article Info

Publish Date
17 Dec 2024

Abstract

This research develops an intelligent system that utilizes vision camera technology to detect completeness of noodle packages consisting of noodle blocks, oil, and seasoning. Multi-Layer Perceptron (MLP) and Naïve Bayes are used to classify images in recognizing the shape and color of the seasoning that should be present in noodle packages using Weka. The system's input is the captured data of noodle package completeness taken in real-time with randomly positioned oil and seasoning. A total of 486 random data points were used, with 70% for training and 30% for testing. The testing results show that MLP outperforms Naïve Bayes in almost all evaluation metrics, with an accuracy of 98.48% for MLP, compared to 74.32% for Naïve Bayes. In terms of construction time, Naïve Bayes is superior with a construction time of 0.01 seconds

Copyrights © 2024






Journal Info

Abbrev

jsc

Publisher

Subject

Automotive Engineering Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering

Description

Jurnal Sistem Cerdas dengan eISSN : 2622-8254 adalah media publikasi hasil penelitian yang mendukung penelitian dan pengembangan kota, desa, sektor dan kesistemam lainnya. Jurnal ini diterbitkan oleh Asosiasi Prakarsa Indonesia Cerdas (APIC) dan terbit setiap empat bulan ...