Mandalika Mathematics and Educations Journal
Vol 6 No 1 (2024): Edisi Juni

Efektivitas Metode Brent dalam Penyelesaian Masalah Break Even Point Menggunakan Pemrograman Pascal

Sujaya, Ketut Ary (Unknown)
Sudi Prayitno (Unknown)
Nani Kurniati (Unknown)
Nyoman Sridana (Unknown)



Article Info

Publish Date
30 May 2024

Abstract

The non-linear mathematical model of the break even point (BEP) problem is difficult to solve analytically to obtain an exact solution, so the alternative is to solve it numerically. This research aims to solve the BEP problem and measure the effectiveness of Brent's method compared to other solution methods based on error and number of iterations. This research is an applied type whose implementation procedures include preparation, implementation, program testing, program revision, analysis, and conclusion. The errors of Brent’s, secant, false position, and bisection methods in solving the BEP problem are 0.00118; 0.00893; 0.64485; and 0.89119, respectively. While the number of iterations from several checks are 52, 53, 91, and 101, respectively. Therefore, it can be concluded that the Brent’s method is more effective than the other three methods.

Copyrights © 2024






Journal Info

Abbrev

MANDALIKA

Publisher

Subject

Mathematics

Description

Mandalika Mathematics and Education Journal adalah Jurnal Matematika dan Pendidikan Matematika yang dikelola oleh Program Studi S1 Pendidikan Matematika FKIP Universitas Mataram. Fokus dan ruang lingkup dari jurnal ini adalah artikel ilmiah baik berupa hasil penelitian, review artikel maupun kajian ...