Random Forest is an ensemble learning algorithm that combines multiple decision trees to generate a more stable and accurate classification model. This study aims to optimize Random Forest parameters for classifying school-age students' eligibility for the Kartu Indonesia Pintar (KIP) in West Java, based on economic factors. The research uses secondary data from the 2023 National Socio-Economic Survey (SUSENAS) of West Java, with a sample size of 13,044 individuals. To address class imbalance, Synthetic Minority Oversampling Technique (SMOTE) is applied. Hyperparameter tuning through grid search identifies the optimal combination of parameters, including the number of trees (ntree), random variables per split (mtry), and terminal node size (node_size). Model performance is evaluated using balanced accuracy, sensitivity, and specificity. Results indicate that the optimal parameters (mtry = 5, ntree = 674, node_size = 26) yield a balanced accuracy of 65.47%. Significant variables include PKH status, floor area of the house, source of drinking water, and building material type. The model accurately identifies students in need of educational assistance. In conclusion, optimizing Random Forest parameters improves the accuracy of KIP eligibility classification, supporting educational equity policies in West Java. These findings provide a foundation for developing more effective beneficiary selection systems for educational aid.
                        
                        
                        
                        
                            
                                Copyrights © 2025