Electricity demand forecasting is critical for efficient energy management and planning. This study focuses on the development and implementation of the Autoregressive Integrated Moving Average (ARIMA) method for forecasting electricity demand in South Sulawesi's power system. The evaluation of forecasting accuracy was conducted using the Mean Absolute Percentage Error (MAPE), which measures the percentage error between predicted and actual values. Two experiments were conducted with different ARIMA models: ARIMA(5,1,0) and ARIMA(2,0,1). Results showed that the ARIMA(5,1,0) model achieved a MAPE of 2.15%, while the ARIMA(2,0,1) model performed slightly better with a MAPE of 1.91%, indicating highly accurate predictions. The findings highlight the effectiveness of the ARIMA method in forecasting electricity demand, providing a reliable tool for energy providers to optimize resource allocation and enhance operational efficiency. Future research may explore integrating ARIMA with other advanced methods to further improve forecasting performance.
Copyrights © 2025