Local ingredients and Indonesia's diverse culinary traditions play an important role in shaping people's health and eating habits. Understanding the nutritional profile of Indonesian food is crucial to promoting healthier food choices. This study aims to classify Indonesian food and beverages based on their nutritional content, with a focus on calories, protein, fat, and carbohydrates. To achieve this, a dataset of 1,346 food items was preprocessed using normalization techniques to improve model performance. Each food item was categorized as High Protein, High Fat, or High Carbohydrate based on its dominant macronutrient content. Five machine learning models which are K-Nearest Neighbors, Decision Trees, Support Vector Machines, Random Forest, and Multilayer Perceptron-were used and compared. Among these models, the Support Vector Machine achieved the highest classification accuracy of 99.1%. These findings demonstrate the potential of machine learning in nutrition research, providing a basis for developing data-driven dietary recommendations tailored to individual nutritional needs. This research bridges traditional dietary research with modern computational approaches, offering insights for public health initiatives and personalized nutrition planning.
Copyrights © 2025