Claim Missing Document
Check
Articles

Found 3 Documents
Search

Digit and Mark Recognition Using Convolutional Neural Network for Voting Digitization in Indonesia Mandasari, Mandasari; Al Qohar, Bagus
Journal of Information System Exploration and Research Vol. 2 No. 2 (2024): July 2024
Publisher : shmpublisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joiser.v2i2.365

Abstract

Digitization of voting results in Indonesia is essential to ensure the accuracy and integrity of the election process. This research introduces an innovative approach that uses Convolutional Neural Networks (CNN) for handwritten number recognition and tally mark recognition. This research uses a dataset obtained from Kaggle. The research process is conducted in several stages, namely Data Collection, Preprocessing, Data Sharing, Modelling, and Evaluation. The results showed that the proposed model achieved an accuracy of 98%. This research shows that using the CNN algorithm for handwritten number recognition and tally mark recognition can improve accuracy and efficiency in digitizing voting results. It is expected that this research can make a significant contribution to the development of a more reliable digital voting system. Future research is recommended to use a larger dataset to validate the strength of the model, which has been built on more varied data.
Machine Learning Techniques for Classifying Indonesian Foods and Drinks by Nutritional Profiles Al Qohar, Bagus; Tanga, Yulizchia Malica Pinkan; Darmawan, Aditya Yoga
Journal of Information System Exploration and Research Vol. 3 No. 1 (2025): January 2025
Publisher : shmpublisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joiser.v3i1.528

Abstract

Local ingredients and Indonesia's diverse culinary traditions play an important role in shaping people's health and eating habits. Understanding the nutritional profile of Indonesian food is crucial to promoting healthier food choices. This study aims to classify Indonesian food and beverages based on their nutritional content, with a focus on calories, protein, fat, and carbohydrates. To achieve this, a dataset of 1,346 food items was preprocessed using normalization techniques to improve model performance. Each food item was categorized as High Protein, High Fat, or High Carbohydrate based on its dominant macronutrient content. Five machine learning models which are K-Nearest Neighbors, Decision Trees, Support Vector Machines, Random Forest, and Multilayer Perceptron-were used and compared. Among these models, the Support Vector Machine achieved the highest classification accuracy of 99.1%. These findings demonstrate the potential of machine learning in nutrition research, providing a basis for developing data-driven dietary recommendations tailored to individual nutritional needs. This research bridges traditional dietary research with modern computational approaches, offering insights for public health initiatives and personalized nutrition planning.
Guava Disease Classification Using EfficientNet and Genetic Algorithm-Optimized XGBoost Darmawan, Aditya Yoga; Al Qohar, Bagus; Dullah, Ahmad Ubai; Ishak, Muhamad Izaidi
Journal of Information System Exploration and Research Vol. 3 No. 2 (2025): July 2025
Publisher : shmpublisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joiser.v3i2.593

Abstract

Guava is an evergreen plant in the Myrtaceae family, is renowned for its adaptability and noteworthy nutritional benefits. However, guava production has experienced a substantial decline in recent years due to various diseases affecting the fruit. Farmers typically employ manual inspection to identify these diseases, a method that is time-consuming, labor-intensive, and susceptible to errors. This underscores the necessity for an automated classification model capable of accurately diagnosing guava fruit diseases. While numerous machine learning and deep learning models have been developed for agricultural disease detection, research on combining deep transfer learning as a feature extractor with machine learning classifiers remains relatively limited. Addressing this research gap, the proposed model integrates the strengths of both approaches, achieving an impressive accuracy of 98.62%, surpassing the performance reported in previous studies. This encouraging outcome underscores the potential of hybrid models in enhancing guava fruit disease classification, paving the way for more efficient and scalable agricultural management solutions.