Kegiatan bertransaksi secara online sudah seringkali dilakukan oleh berbagai kalangan baik itu kaum anak muda sampai orang tua. Melihat dari tren kunjungan dari setiap marketplace di Indonesia memiliki tren yang berbeda-beda, ada yang mengalami kenaikan dan ada yang mengalami penurunan salah satunya adalah Bukalapak. Dari 3 marketplace terbesar di Indonesia, Bukalapak terus mengalami tren penurunan kunjungan dari tahun 2019 sampai tahun 2022. Pada penelitian ini, bertujuan untuk mengetahui setiap ulasan/komentar di Twitter dan menghitung berapa capaian ulasan yang positif, negatif, atau netral dan juga mengetahui tingkat akurasi terbaik. Metode yang akan digunakan dalam penelitian ini adalah Support Vector Machine (SVM) dan metode untuk optimasi dengan menggunakan Particle Swarm Optimization (PSO). Hasil dari penelitian ini ditampilkan dengan rasio data latih 80% dan data uji 20% yang menggunakan metode Support Vector Machines (SVM) saja, mendapatkan nilai akurasi sebesar 95,94%, precision sebesar 94,92%, dan recall sebesar 96,14%. Sedangkan untuk pengujian kedua menggunakan metode Support Vector Machines (SVM) dan optimasi menggunakan fitur seleksi pada metode Particle Swarm Optimization (PSO) menghasilkan nilai akurasi sebesar 96,22%, precision sebesar 95,24%, dan recall sebesar 96,18%. Pada percobaan kedua ini juga mendapatkan paramater C dan gamma terbaik yaitu parameter C sebesar 0.8036 dan parameter gamma sebesar 1.616.
                        
                        
                        
                        
                            
                                Copyrights © 2024