International Journal of Renewable Energy Development
Vol 14, No 3 (2025): May 2025

Development of WO3/TiO2-NT/Ti photoanode for simultaneously POME degradation, electricity generation, and hydrogen production in a photocatalysis-fuel cell system

Bachri, M. Febriansyah (Unknown)
Husein, Saddam (Unknown)
Susanto, Bambang Heru (Unknown)
Ratnawati, Ratnawati (Unknown)
Slamet, Slamet (Unknown)



Article Info

Publish Date
01 May 2025

Abstract

This research presents a WO₃/TiO₂-NT/Ti photoanode for processing POME waste as well as producing electricity and hydrogen simultaneously. The photoanode in the form of nanocomposites was synthesized using an in-situ anodization method and characterized using Field Emission Scanning Electron Microscopy with Energy Dispersive X-ray (FESEM-EDX), X-ray Diffraction (XRD), Photoluminescence Spectroscopy (PL-Spectra), photocurrent transient, X-ray Photoelectron Spectroscopy (XPS), and UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The results showed that the WO₃/TiO₂-NT/Ti photoanode with 0.3 g of WO₃ precursor added during anodization exhibited the best PFC performance. The system achieved a COD degradation of 84%, hydrogen production of 11.18 mmol/m², and a maximum power density of 0.0375 mW/cm² under visible light irradiation, outperforming the variations with 0.5 g and 0.78 g WO₃ precursor. The enhanced performance was attributed to the formation of a heterojunction between WO₃ and TiO₂, as confirmed by characterization results and performance tests in COD degradation, electricity generation, and hydrogen production. Meanwhile, the addition of 0.5 g and 0.78 g WO₃ precursor reduced photocatalytic performance, likely due to excessive Na₂WO₄·2H₂O during anodization, which could partially cover the active TiO₂-NT/Ti surface and alter the electrochemical oxidation process. The developed WO₃/TiO₂-NT/Ti photoanode offers a promising solution for simultaneous wastewater treatment, clean hydrogen production, and electricity generation, with potential applications in sustainable palm oil processing industries and future renewable energy technologies.

Copyrights © 2025






Journal Info

Abbrev

ijred

Publisher

Subject

Control & Systems Engineering Earth & Planetary Sciences Electrical & Electronics Engineering Energy Engineering

Description

The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, ...