Journal of Computer Networks, Architecture and High Performance Computing
Vol. 7 No. 1 (2025): Article Research January 2025

SHORT-TERM ELECTRICITY LOAD FORECASTING SEASONAL PATTERN USING TIME SERIES REGRESSION (TSR) MODEL IN PT.PLN (PERSERO) MEDAN CITY

Rambe, Feby Mayori (Unknown)
Widyasari, Rina (Unknown)



Article Info

Publish Date
19 Feb 2025

Abstract

Electricity is a crucial component of modern life, where daily consumption fluctuates significantly. Uncertain electricity demand can lead to imbalances between supply and consumption, potentially causing energy wastage or power outages. To address this issue, a forecasting method capable of accurately predicting electricity load is essential. The Time Series Regression (TSR) model is applied for short-term electricity load forecasting by considering daily and weekly seasonal patterns. The forecasting results indicate that Monday and Tuesday have the highest electricity load, while Sunday has the lowest. When the Kolmogorov-Smirnov test is used to analyse the model, the p-value is 0.9608, which shows that the residuals have a normal distribution. The model's accuracy is assessed with a Root Mean Square Error (RMSE) value of 378.0069 MW, which is relatively high for a small dataset. Given the considerable forecasting error, further improvements such as hybrid models are recommended to enhance accuracy. The implementation of these forecasting results can help optimize electricity management and improve power distribution efficiency.

Copyrights © 2025






Journal Info

Abbrev

CNAPC

Publisher

Subject

Computer Science & IT Education

Description

Journal of Computer Networks, Architecture and Performance Computing is a scientific journal that contains all the results of research by lecturers, researchers, especially in the fields of computer networks, computer architecture, computing. this journal is published by Information Technology and ...