Ulil Albab
Vol. 3 No. 2: Januari 2024

Peramalan Beban Listrik Kabupaten Cilacap

Evan Dhia Aruna (Universitas Tidar)
Bagus Fatkhurrozi (Universitas Tidar)
Andriyatna Agung Kurniawan (Universitas Tidar)



Article Info

Publish Date
11 Jan 2024

Abstract

This study examines electricity load, emphasizing the need for accurate prediction and optimal distribution. Utilizing artificial neural networks and the backpropagation algorithm, the research leverages data from BPS Kabupaten Cilacap and PT. PLN (Persero) UP3 Kabupaten Cilacap. Various configurations for hidden layer neurons, epochs, and learning rates are explored to determine the optimal network architecture for forecasting. The selected model, with specific criteria, demonstrates high accuracy during training (MSE: 0.00099999, MAPE: 5.44%, Regression: 0.98226) and testing (MSE: 0.0009493, MAPE: 3.99%, Regression: 0.90709) phases. The conclusion affirms the effectiveness of the Backpropagation ANN method in predicting electricity load in Kabupaten Cilacap for the period 2023-2030, meeting PLN's tolerance of ≤ 10% based on the MAPE criteria.

Copyrights © 2024






Journal Info

Abbrev

JIM

Publisher

Subject

Religion Humanities Economics, Econometrics & Finance Education Social Sciences

Description

ULIL ALBAB : Jurnal Ilmiah Multidisiplin diterbitkan oleh CV. ULIL ALBAB CORP. ULIL ALBAB : Jurnal Ilmiah Multidisplin menerbitkan artikel bidang multidisiplin, termasuk : Pendidikan, Hukum, Ekonomi, Agama, Pendidikan, Kesehatan, Teknik, Kebijakan Publik, Pariwisata, Sosial dan Politik, Budaya, ...