Child stunting is a health problem that has a major impact on their physical growth and brain development. This study aims to create a model that can predict the risk of stunting using machine learning technology, in order to provide assistance quickly. Using data from 7,573 children, which included information such as age, weight, height gender and breastfeeding status, we tried two methods, Naive Bayes and Decision Tree. As a result, Naive Bayes was more accurate and the success rate reached 92%, compared to Decision tree which was only 88%. With this model, it is hoped that health workers will find it easier to find children at risk of stunting, so that preventive action can be taken earlier. This research aims to provide technology-based solutions to overcome the problem of stunting in the community.
                        
                        
                        
                        
                            
                                Copyrights © 2025