Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 2 No 5 (2018): Mei 2018

Klasifikasi Gangguan Jiwa Skizofrenia Menggunakan Algoritme Support Vector Machine (SVM)

Daisy Kurniawaty (Fakultas Ilmu Komputer, Universitas Brawijaya)
Imam Cholissodin (Fakultas Ilmu Komputer, Universitas Brawijaya)
Putra Pandu Adikara (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
05 Sep 2017

Abstract

Insanity is the most common disease. One of insanity is schizophrenia. The process of diagnosis of schizophrenia is difficult, because there is no specific characteristic of behavior or appearance for the sufferer, some sufferer can behave and look like normal people and expensive treatment. It will make the patient's condition worse. To resolve this issue, this can be done with schizophrenia classification using support vector machine (SVM) algorithm. In this study there are 75 data that is divided into two types of schizophrenia, that is paranoid and simplex. The method in this study using support vector machine algorithm, wich to the category of good classification method, provides a statistical approach in pattern recognition, and is a linear method, but SVM provides kernel trick, which can solve problems related to non-linear classification. The result obtained using SVM 100% accuracy using ratio data 90%:10%, gamma = 0,00001, lambda = 3, C = 0,01, kernel polynomial of degree, maximum iteration is 1000.

Copyrights © 2018






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...