Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 1 No 12 (2017): Desember 2017

Named Entity Recognition Menggunakan Hidden Markov Model dan Algoritma Viterbi pada Teks Tanaman Obat

Agung Setiyoaji (Fakultas Ilmu Komputer, Universitas Brawijaya)
Lailil Muflikhah (Fakultas Ilmu Komputer, Universitas Brawijaya)
Mochammad Ali Fauzi (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
07 Aug 2017

Abstract

Media to convey information can be through television, radio, social media, and website. Website is a work of someone located in a domain that contains information. The development of websites more and more information is not unstoppable so that the problem arises difficult to find information in accordance with the needs of Internet users, so that the required classification and extraction of information for information on the website. Named Entity Recognition which derives from the extraction of information, NER aims to facilitate the search for information by naming entities on each word in a text. In this research will be done the introduction of four entities namely the NAME, PLACE, SUBSTANCE, and FUNCTION of the text on medicinal plants. The algorithm used Hidden Markov Model (HMM) and Viterbi algorithm. Overall entity recognition count the lowest value with f-measure 0.41, and the highest with f-measure 0.72.

Copyrights © 2017






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...