Jurnal Sistem Cerdas
Vol. 8 No. 1 (2025)

Land Cover Analysis with Fully Convolutional Network

Ihwan, Abib Raifmuaffah (Unknown)
Lapatta, Nouval Trezandy (Unknown)
Joefrie, Yuri Yudhaswana (Unknown)
Anshori, Yusuf (Unknown)
Syahrullah, Syahrullah (Unknown)



Article Info

Publish Date
10 Apr 2025

Abstract

This study analyses land cover in Morowali Regency using Sentinel-2 satellite imagery and the Fully Convolutional Network (FCN) algorithm. Land cover analysis in this area is crucial for monitoring rapid industrialization, especially in the mining sector. The methodology includes retrieving image data from Google Earth Engine, image processing to eliminate cloud influences, and model training using the European Space Agency (ESA) datasets. The results of the analysis show that 50% of the Morowali Regency area has the potential to be planted with trees, followed by 20% for water areas, and the rest for bushes, development land, and empty land. This study proves that FCN can be relied on to predict land potential with high accuracy with a loss value of 1.3001.

Copyrights © 2025






Journal Info

Abbrev

jsc

Publisher

Subject

Automotive Engineering Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering

Description

Jurnal Sistem Cerdas dengan eISSN : 2622-8254 adalah media publikasi hasil penelitian yang mendukung penelitian dan pengembangan kota, desa, sektor dan kesistemam lainnya. Jurnal ini diterbitkan oleh Asosiasi Prakarsa Indonesia Cerdas (APIC) dan terbit setiap empat bulan ...