JURNAL SISTEM INFORMASI BISNIS
Vol 15, No 2 (2025): Volume 15 Number 2 Year 2025

Identification of Grouper Fish Types using Convolutional Neural Network Resnet-50 Algorithm

Nuraini, Rini (Unknown)
Syafei, Wahyul Amien (Unknown)
Wibowo, Adi (Unknown)
Jaya, Indra (Unknown)



Article Info

Publish Date
12 Jun 2025

Abstract

Grouper is a type of fish that is popular with the public. It is necessary to identify the type of grouper fish based on color patterns with increase the epoch value to get the best accuracy. The purpose of the research is to predict the type of grouper. This research use CNN Resnet-50 algorithm. 30 data used. The accuracy of prediction is 75 % to predict the image groupers. In the grouper prediction process, the more we increase the epoch value, we will get the best accuracy value. Epoch is a factor that affects the time of training an AI model and affects the accuracy value of the AI model.

Copyrights © 2025






Journal Info

Abbrev

jsinbis

Publisher

Subject

Computer Science & IT Economics, Econometrics & Finance

Description

JSINBIS merupakan jurnal ilmiah dalam bidang Sistem Informasi bisnis fokus pada Business Intelligence. Sistem informasi bisnis didefinisikan sebagai suatu sistem yang mengintegrasikan teknologi informasi, orang dan bisnis. SINBIS membawa fungsi bisnis bersama informasi untuk membangun saluran ...