Indonesian Journal of Statistics and Its Applications
Vol 9 No 1 (2025)

Classification of Rice Growth Phase Using Regression Logistic Multinomial Model and K-Nearest Neighbors Imputation on Satellite Data

Ghaly, Fayyadh (Unknown)
Kurniawati, Yenni (Unknown)
Amalita, Nonong (Unknown)
Fitria, Dina (Unknown)



Article Info

Publish Date
24 Jun 2025

Abstract

One of the efforts made by the government to maintain food security is to provide statistical data on rice production through accurate calculation of harvest areas using the area sampling framework approach. Although area sampling framework surveys produce accurate estimates, the costs required are quite high when applying this method. To overcome this problem, one solution that can be applied is to utilize satellite imagery to monitor the greenness index of plants using the enhanced vegetation index. However, in real conditions, the Landsat-8 optical satellite is susceptible to cloud cover, which results in missing data. This study aims to model the phase of rice plants using the regression logistic multinomial model by utilizing Landsat-8 satellites and k-nearest neighbors imputation handling to overcome missing data. The results showed that the model had varying performance in each phase, with an average balanced accuracy of 66.45%. This figure shows that the model can classify the area sampling framework data imputed using the k-nearest neighbors imputation method well. The model shows optimal performance in the late vegetative and generative phases but is less effective in detecting the harvest, puso, and non-rice paddy phases.

Copyrights © 2025






Journal Info

Abbrev

ijsa

Publisher

Subject

Computer Science & IT Mathematics Other

Description

Indonesian Journal of Statistics and Its Applications (eISSN:2599-0802) (formerly named Forum Statistika dan Komputasi), established since 2017, publishes scientific papers in the area of statistical science and the applications. The published papers should be research papers with, but not limited ...