Buletin Ilmiah Sarjana Teknik Elektro
Vol. 7 No. 2 (2025): June

Comparative Analysis of PID Tuning Methods for Speed Control in Mecanum-Wheel Electric Wheelchairs

Thongpance, Nuntachai (Unknown)
Chotikunnan, Phichitphon (Unknown)
Wongkamhang, Anantasak (Unknown)
Chotikunnan, Rawiphon (Unknown)
Imura, Pariwat (Unknown)
Khotakham, Wanida (Unknown)
Nirapai, Anuchit (Unknown)
Roongprasert, Kittipan (Unknown)



Article Info

Publish Date
28 Apr 2025

Abstract

This study compares two PID controller tuning methods, particle swarm optimization (PSO) and Cohen-Coon, employed for speed control of an omnidirectional Mecanum-wheel electric wheelchair. Mecanum wheels improve maneuverability on powered mobility platforms; yet, controlling these systems is difficult due to nonlinearities and directional coupling effects. This work investigates the effectiveness of PSO as a sophisticated alternative to traditional PID tuning methods, effectively tackling this issue. This study evaluates P, PI, PD, and PID controllers tuned by both Cohen-Coon and PSO methods, applied to a DC motor system simulating real-world wheelchair actuation. Step response-based system identification models the motor using MATLAB/Simulink. Simulations of a 12V DC motor are examined using controlled-step time-domain inputs. Every controller configuration is subjected to evaluation for overshoot, root mean square error (RMSE), rise time, and settling time. The PSO-tuned PID controller exhibited enhanced performance, characterized by a rise time of 2.06 s, a settling time of 2.37 s, an overshoot of 0.78%, and an RMSE of 4.59, far surpassing the Cohen-Coon variant, which had a settling time of 6.12 s and an overshoot of 20.14%. The results indicate that PSO enhances both transient and steady-state performance in intricate and disturbance-sensitive systems, including Mecanum wheelchairs. Despite PSO's increased computing complexity during offline tuning and the necessity for meticulous parameter selection, its advantages can be precomputed and effectively utilized in real-time embedded systems. This study highlights the importance of safety, dependability, and responsiveness, illustrating that PSO is a scalable and efficient method for improving assistive robotic systems.

Copyrights © 2025






Journal Info

Abbrev

biste

Publisher

Subject

Electrical & Electronics Engineering

Description

Buletin Ilmiah Sarjana Teknik Elektro (BISTE) adalah jurnal terbuka dan merupakan jurnal nasional yang dikelola oleh Program Studi Teknik Elektro, Fakultas Teknologi Industri, Universitas Ahmad Dahlan. BISTE merupakan Jurnal yang diperuntukkan untuk mahasiswa sarjana Teknik Elektro. Ruang lingkup ...