Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 9 No 3 (2025): June 2025

Enhancing Areca Nut Detection and Classification Using Faster R-CNN: Addressing Dataset Limitations with Haar-like Features, Integral Image, and Anchor Box Optimization

Pratama, Yovi (Unknown)
Rasywir, Errissya (Unknown)
Suyanti (Unknown)
Siswanto, Agus (Unknown)
Fachruddin (Unknown)



Article Info

Publish Date
25 Jun 2025

Abstract

The classification and detection of areca nuts are essential for agriculture and food processing to ensure product quality and efficiency. The manual classification of areca nuts is time-consuming and prone to human error. For a more accurate and efficient automated approach, a deep learning-based framework was proposed to address these challenges. This study optimizes the Faster R-CNN by integrating Haar-like features and integral images to enhance object detection. However, dataset limitations, including low image quality, inconsistent lighting, cluttered backgrounds, and annotation inaccuracies, affect the model performance. In addition, the small dataset size and class imbalance hindered generalization. The Faster R-CNN model was trained with and without Haar-like Features and Integral Image enhancement. Performance was evaluated based on training loss, accuracy, precision, recall, F1-score, and mean average precision (mAP). The effects of the dataset limitations on detection performance were also analyzed. The optimized model achieved better stability, with a final training loss of 0.2201, compared to 0.1101 in the baseline model. Accuracy improved from 62.60% to 73.60%, precision from 0.6161 to 0.7261, recall from 0.3094 to 0.4194, F1-score from 0.2307 to 0.3407, and mAP from 0.1168 to 0.2268. Despite these improvements, dataset constraints remain a limiting factor. While the integration of Haar-like features and integral images into faster R-CNN contributes to detection accuracy, the study also reveals that high-resolution images, precise annotations, and dataset scale significantly amplify model performance.

Copyrights © 2025






Journal Info

Abbrev

RESTI

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...