International Journal of Power Electronics and Drive Systems (IJPEDS)
Vol 16, No 2: June 2025

Wind turbine defect detection using deep learning

Somasundaram, Deepa (Unknown)
Vanitha, M. (Unknown)
Kumar, T. Sathish (Unknown)
Adaikalam, I. Arul Doss (Unknown)
Kavitha, P. (Unknown)
Kalaivani, R. (Unknown)



Article Info

Publish Date
01 Jun 2025

Abstract

Wind turbines play a critical role in the generation of renewable energy, but their maintenance and inspection, especially in large-scale wind farms, present significant challenges. Traditionally, wind turbines have been inspected manually, a process that is not only time-consuming but also costly and risky. Unmanned aerial vehicles (UAVs) have emerged as an efficient alternative, offering a safer and more economical means of gathering inspection data. However, the challenge lies in the manual analysis of the collected data, which demands expertise and considerable time. This paper proposes using object detection algorithms, specifically YOLOv8, to automate the detection of wind turbines and their defects, streamlining the inspection process. The model is trained on wind turbine images to identify potential faults such as cracks and corrosion. This approach aims to increase the accuracy and efficiency of wind turbine maintenance, ensuring prompt defect detection and reducing both operational costs and downtime.

Copyrights © 2025






Journal Info

Abbrev

IJPEDS

Publisher

Subject

Control & Systems Engineering Electrical & Electronics Engineering

Description

International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. ...