Bulletin of Information Technology (BIT)
Vol 6 No 2: Juni 2025

Penerapan Data Mining Untuk Klasifikasi Penduduk Miskin Di Kabupaten Labuhanbatu Menggunakan Random Forest Dan K-Nearest Neighbors

Ernawati, Andi (Unknown)
Khairul (Unknown)
Sitorus, Zulham (Unknown)
Iqbal, Muhammad (Unknown)
Nasution, Darmeli (Unknown)



Article Info

Publish Date
03 Jun 2025

Abstract

This study aims to apply and compare the performance of two data mining algorithms—Random Forest (RF) and K-Nearest Neighbors (KNN)—in classifying poverty status among residents of Labuhanbatu Regency. The dataset includes information on occupation, income, housing, and education from 21,137 individuals. After undergoing preprocessing, model training, hyperparameter optimization, and evaluation, both models were assessed using five key metrics: accuracy, precision, recall, F1-score, and AUC. The results show that Random Forest performed slightly better than KNN, achieving an accuracy of 0.6023, precision of 0.4827, recall of 0.4177, F1-score of 0.4479, and an AUC of 0.5681. In comparison, KNN obtained an accuracy of 0.5990, precision of 0.4771, recall of 0.4006, F1-score of 0.4355, and an AUC of 0.5622. Based on these findings, it can be concluded that Random Forest is more effective for poverty classification on this dataset, although the performance difference is relatively small.

Copyrights © 2025






Journal Info

Abbrev

BIT

Publisher

Subject

Computer Science & IT

Description

Jurnal Bulletin of Information Technology (BIT) memuat tentang artikel hasil penelitian dan kajian konseptual bidang teknik informatika, ilmu komputer dan sistem informasi. Topik utama yang diterbitkan mencakup:berisi kajian ilmiah informatika tentang : Sistem Pendukung Keputusan Sistem Pakar Sistem ...