BRI Mobile application is a digital banking service launched in 2019 by Bank Rakyat Indonesia, which provides facilities such as mobile banking, internet banking, and electronic money. The presence of this application aims to facilitate customers in accessing and managing financial services efficiently through mobile devices. Reviews have become a very important sourceĀ on platforms such as Google Playstore become a very important source of information to evaluate and improve service quality. However, manually identifying sentiment representations from thousands of reviews is a time-consuming and inefficient process. This research aims to perform sentiment analysis automatically on BRI Mobile application user reviews by utilizing text mining methods. The sentiment classification process is carried out using the Gradient Boosting algorithm approach and initial analysis using the VADER Sentiment method to provide initial data labelling. Based on the classification results, 344 data with positive sentiment, 333 data with negative sentiment, and 333 data with neutral sentiment were obtained. The model built was then evaluated using the accuracy metric, and an accuracy value of 97% was obtained. The results of this research are expected to be a strategic input for application developers in understanding user perceptions more objectively and efficiently.
Copyrights © 2025