Claim Missing Document
Check
Articles

Found 8 Documents
Search

Klasifikasi Komentar Instagram untuk Identifikasi Keluhan Pelanggan Jasa Pengiriman Barang dengan Metode SVM dan Naïve Bayes Berbasis Teknik Smote nanang ruhyana; didi rosiyadi
Faktor Exacta Vol 12, No 4 (2019)
Publisher : LPPM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/faktorexacta.v12i4.4981

Abstract

Customer satisfaction is one of the things expected by a company when the product produced has been marketed, both in the form of goods and services. How to complain through customer service is very diverse, lately not only by telephone, customers submit their suggestions or complaints. Customers can submit their suggestions or complaints via e-mail or e-mail or forums in the virtual world that are made by product-producing companies to accommodate a variety of complaints, suggestions, and direct criticism from consumers, especially social media, who are free to express their opinions on shipping services. they use. Instagram is a social media that is more inclined to images and on the other hand has text captions and comments, from the above problems trying to make a research for customer complaints of users of goods delivery services on an Instagram account shipping service company. From the background of the problem, the researchers tried to solve the problem for text mining classifiers by using the Support Vector Machine (SVM) and Naïve Bayes methods and using the SMOTE technique with the usual processes for text mining so that they could produce 69.68% accuracy for Support Vector Machine (SVM) and Naïve Bayes with an accuracy of 88.54%, using the Instagram comment text dataset of 776 records that have been done with preprocessing text.
Applied of Classification Technique in Data Mining For Credit Scoring Heriyanto, Heriyanto; Kurniawati, Ika; Amsury, Fachri; Rizki Fahdia, Muhammad; Saputra, Irwansyah; Nanang Ruhyana; Asrul
Inspiration: Jurnal Teknologi Informasi dan Komunikasi Vol. 12 No. 2 (2022): Inspiration: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Pusat Penelitian dan Pengabdian Pada Masyarakat Sekolah Tinggi Manajemen Informatika dan Komputer AKBA Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (317.759 KB) | DOI: 10.35585/inspir.v12i2.17

Abstract

In the development of the banking business, credit issues remain interesting to study and uncover. Most of the problems occur not in the system implemented by the bank, but the problem occurs precisely in the human resources who manage credit, either in their relationship with consumers or in errors on the part of the bank which mispredicts in assessing consumers who apply for credit. Several studies in the computer field have been carried out to reduce credit risk which causes losses to the company. In this study, a comparison of the Naive Bayes, C4.5 and KNN algorithms was carried out which was applied to consumer data that received credit eligibility for good and bad customers. The best prediction results are nave Bayes with an accuracy of 95.95 % and an AUC of 0.974. The results of this classification are implemented in the form of a website-based application that can be used to facilitate related parties in the credit scoring system.
Pelatihan Analisa Data Youtube dan Website untuk Majelis Remaja dan Pemuda Islam (MADARIS) Jakarta Islamic Centre Bayhaqy, Achmad; Riyadi, Andri Agung; Suyoto, Suyoto; Nanang Ruhyana
Jurnal Aruna Mengabdi Vol. 1 No. 2 (2023): Periode November 2023
Publisher : Lotus Aruna Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61398/armi.v1i2.34

Abstract

Pada era digitalisasi saat ini semua orang dapat melihat informasi dengan cepat dan mudah salah satunya youtube dan website, sehingga setiap organisasi remaja masjid khususnya, umumnya organisasi masyarakat bisa dapat memberikan informasi-informasi yang berguna bagi masyarakat yang luas, yang menjadi kendala ada pada saat organisasi tidak tahu apa yang dibutukan untuk masyarakat tersebut sehingga pada saat membuat konten, artikel atau berita tidak membuat orang tertarik, saat ini perkembangan data analytics sayangatlah dibutukan sehingga apa yang dilakukan perlu kita analisa terlebih dahulu. Dalam hal ini bisa dilakukan juga dengan teknologi Google Analytics, Google Analytics merupakan layanan gratis yang disediakan oleh raksasa mesin pencari Google, Google analytics menyajikan informasi sehubungan dengan pengunjung dari suatu website. Google Analytics merupakan salah satu aplikasi yang menyajikan informasi hasil web usage mining yang menggunakan teknik page tags. Cara kerja dan penggunaan Google Analytics sangatlah mudah, sehingga peranan remaja masjid dalam menggunakan teknologi dapat diterapkan karena dengan adanya skill yang baik
Implementasi Nilai Ketaatan Hukum pada Masa Pemberlakuan Pembatasan Kegiatan Masyarakat (PPKM) Darurat dalam Rangka Menurunkan Penyebaran Corona Virus Desease-2019 (Covid-19) Nanang Ruhyana
Jurnal Lemhannas RI Vol 9 No 2 (2021)
Publisher : Lembaga Ketahanan Nasional Republik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55960/jlri.v9i2.387

Abstract

Untuk menurunkan laju penularan Covid-19, pemerintah memberlakukan PPKM Darurat untuk Wilayah Jawa dan Bali, hal ini bisa dilihat dari penyekatan jalan-jalan arteri dan penutupan sektor non essensial. Jumlah kasus Covid-19 sampai dengan 4 Juli 2021 tercatat kasus konfirmasi 2.284.084, kasus aktif 295.228, sembuh 1.928.274, dan meninggal 60.582. Tujuan dari tulisan ini adalah untuk melihat implementasi ketaatan hukum dan dampaknya terhadap pandemi Covid-19. Kajian ini menggunakan pendekatan socio-legal dan teori penegakan hukum sebagai pisau analisis deskriptif. Hasil kajian menunjukkan bahwa sebagai bentuk kewajiban dalam masa PPKM Darurat, pemerintah menggelontorkan dana untuk bantuan sosial kemasyakatan, pendidikan, dan tenaga kerja, dengan syarat seluruh masyarakat tetap mentaati protokol kesehatan sehingga kebijakan ini akan terus dilonggarkan, dan nilai ketaatan hukum dapat menurunkan kasus Covid-19 pada masa PPKM Darurat, terbukti dengan menurunya kasus konfirmai baru, kasus aktif, pemakaian jumlah tempat tidur, dan meningkatnya angka kesembuhan.
SENTIMENT ANALYSIS OF USER REVIEWS BRI MOBILE APPLICATION WITH GRADIENT BOOST METHOD Nanang Ruhyana; Salsabila, Kanita; Agung, Andri; Mardiana, Tati
Jurnal Riset Informatika Vol. 7 No. 2 (2025): Maret 2025
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34288/jri.v7i2.342

Abstract

BRI Mobile application is a digital banking service launched in 2019 by Bank Rakyat Indonesia, which provides facilities such as mobile banking, internet banking, and electronic money. The presence of this application aims to facilitate customers in accessing and managing financial services efficiently through mobile devices. Reviews have become a very important source on platforms such as Google Playstore become a very important source of information to evaluate and improve service quality. However, manually identifying sentiment representations from thousands of reviews is a time-consuming and inefficient process. This research aims to perform sentiment analysis automatically on BRI Mobile application user reviews by utilizing text mining methods. The sentiment classification process is carried out using the Gradient Boosting algorithm approach and initial analysis using the VADER Sentiment method to provide initial data labelling. Based on the classification results, 344 data with positive sentiment, 333 data with negative sentiment, and 333 data with neutral sentiment were obtained. The model built was then evaluated using the accuracy metric, and an accuracy value of 97% was obtained. The results of this research are expected to be a strategic input for application developers in understanding user perceptions more objectively and efficiently.
Approaches to Customer Types Classification Method in the Supermarket Nanang Ruhyana; Mardiana, Tati
Jurnal Riset Informatika Vol. 6 No. 1 (2023): December 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1128.804 KB) | DOI: 10.34288/jri.v6i1.269

Abstract

The development of the retail industry in the economy is very rapid so it provides good economic growth, one of the retailers is supermarkets, in supermarkets consumers can buy goods directly, so consumers must be served well. The problem is how supermarkets can continue to increase their sales results, because there is a lot of competition from supermarket competitors, so the marketing team when creating events or promotions must be right on target so that loyalty for member or non-member customers can be measured, which will be used as the right marketing strategy and can increase customer satisfaction when the customer is satisfied with the services, products and promotional activities at the supermarket, the customer will continue to make purchases and will increase the results of achieving good sales. Based on this problem, how will this research apply the classification method, so that when we can make predictions from supermarket sales data for member and non-member customers, there will be a lot of insight for the marketing team, so that marketing activities are right on target for member or non-member customers. This research uses machine learning methods for data classification, using the Support Vector Machine (SVM) and Naïve Bayes algorithms. The results of this research are from the Support Vector Machine (SVM) algorithm. Accuracy is 0.493 while using the Naïve Bayes algorithm is 0.535. From the results of this research, the use of the Naïve Bayes algorithm is better than SVM so that it can approach the prediction of member and non-member customer classification in supermarket data in this research.
Implementation of the FP-Growth Algorithm on Spare Parts Supply Requests Amsury, Fachri; Nanang Ruhyana; Riyadi, Andri Agung; Bayhaqy, Achmad
Jurnal Riset Informatika Vol. 6 No. 3 (2024): June 2024
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (995.929 KB) | DOI: 10.34288/jri.v6i3.302

Abstract

Manufacturing companies rely on machines for operational activities to produce finished goods. Common factors constraining the demand and supply of spare parts are the high number of spare parts managed and irregular patterns of demand for spare parts. These varying quantities also require investment in spare parts inventory and longer response times than predicted. The research aims to apply the FP-Growth algorithm approach to find association rules and produce patterns of demand and supply of spare parts in lightweight brick manufacturing companies based on transaction data on demand and supply of spare parts from January – March 2023. The approach used is associated with the applied algorithm. In this research, the primary process of the FP-Growth algorithm is to create a combination of each item until no more combinations are formed using minimum support and minimum confidence parameters. Based on the results of making association rules using spare parts demand data from the machine maintenance department, it is stated that the regulations formed from processing the RapidMiner application with a confidence value of 100% recommend FD Regular Bolt spare parts, then the next rating with a confidence value of 94% is Steel Nuts, seven rules recommend Nuts. Steel. Therefore, it is recommended that FD Regular Bolts and Steel Nuts carry out safety stock to maintain stock availability and place them on shelves included in the fast-moving inventory category.
HUBUNGAN IBU HAMIL DENGAN KEKURANGAN ENERGI KRONIS TERHADAP KEJADIAN STUNTING PADA BALITA USIA 24-60 BULAN DI PUSKESMAS ROWOKELE Affandi, Thysa Thysmelia; Ardhian Yudha Candra Pranowo; Nanang Ruhyana
InaBHS (Indonesian Journal of Biomedicine and Health Science) Vol 4 No 1 (2025): Indonesian Journal of Biomedicine and Health Science
Publisher : Fakultas Kedokteran UGJ Cirebon

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33603/inabhs.v4i1.10798

Abstract

Latar belakang: Stunting merupakan suatu kondisi kronis yang disebabkan oleh asupan gizi yang kurang dalam jangka waktu yang cukup lama akibat pemberian makanan yang tidak sesuai dengan kebutuhan gizi. Stunting secara garis besar dikelompokkan menjadi 3 yaitu, individu, tingkat masyarakat, rumah tangga (keluarga). Prevalensi stunting di jawa tengah berdasarkan hasil Riset Kesehatan Dasar (Riskesdas) tahun 2018, Kabupaten Kebumen merupakan target prioritas penanganan stunting dari 160 kabupaten/kota yang ada di Indonesia. Prevalensi stunting di Kabupaten Kebumen pada tahun 2017 sebesar 28,50%. Ibu hamil beresiko mengalami Kekurangan Energi Kronis jika memiliki Lingkar Lengan Atas (LILA) <23,5 cm. Ibu hamil dengan Kekurangan Energi Kronis beresiko melahirkan bayi stunting. Tujuan: mengetahui hubungan ibu hamil dengan Kekurangan Energi Kronis (KEK) terhadap kejadian stunting pada balita usia 24-60 bulan di wilayah kerja puskesmas rowokele kabupaten kebumen. Metode: Penelitian deskriptif retrospektif yang melibatkan 44 responden berada pada wilayah kerja Puskesmas Rowokele. Data penelitian diperoleh dari data sekunder. Analisis data menggunakan uji Statistik Deskriptif. Hasil: Hasil analisis bivariat dengan korelasi uji spearman diketahui hubungan antara Status KEK dengan Stunting dengan p value sebesar 0,001, p= <0,05 dan r=0,539 yang artinya berkorelasi sangat kuat dengan arah positif dimana dua variabel atau lebih yang berhubungan tersebut berjalan paralel atau menunjukkan arah yang sejalan. Kesimpulan: Terdapat hubungan yang bermakna antara ibu hamil dengan KEK terhadap kejadian stunting pada balita usia 24-60 bulan di wilayah kerja Puskesmas Rowokele, terdapat hubungan antara Status KEK ibu hamil dengan Stunting yang berkorelasi sedang dengan arah positif dimana ibu hamil dengan KEK maka besar akan terjadi stunting. Kata Kunci: stunting, Kekurangan Energi Kronis, Ibu hamil KEKLatar belakang: Stunting merupakan suatu kondisi kronis yang disebabkan oleh asupan gizi yang kurang dalam jangka waktu yang cukup lama akibat pemberian makanan yang tidak sesuai dengan kebutuhan gizi. Stunting secara garis besar dikelompokkan menjadi 3 yaitu, individu, tingkat masyarakat, rumah tangga (keluarga). Prevalensi stunting di jawa tengah berdasarkan hasil Riset Kesehatan Dasar (Riskesdas) tahun 2018, Kabupaten Kebumen merupakan target prioritas penanganan stunting dari 160 kabupaten/kota yang ada di Indonesia. Prevalensi stunting di Kabupaten Kebumen pada tahun 2017 sebesar 28,50%. Ibu hamil beresiko mengalami Kekurangan Energi Kronis jika memiliki Lingkar Lengan Atas (LILA) <23,5 cm. Ibu hamil dengan Kekurangan Energi Kronis beresiko melahirkan bayi stunting.Tujuan: mengetahui hubungan ibu hamil dengan Kekurangan Energi Kronis (KEK) terhadap kejadian stunting pada balita usia 24-60 bulan di wilayah kerja puskesmas rowokele kabupaten kebumen.Metode: Penelitian deskriptif retrospektif yang melibatkan 44 responden berada pada wilayah kerja Puskesmas Rowokele. Data penelitian diperoleh dari data sekunder. Analisis data menggunakan uji Statistik Deskriptif.Hasil: Hasil analisis bivariat dengan korelasi uji spearman diketahui hubungan antara Status KEK dengan Stunting dengan p value sebesar 0,001, p= <0,05 dan r=0,539 yang artinya berkorelasi sangat kuat dengan arah positif dimana dua variabel atau lebih yang berhubungan tersebut berjalan paralel atau menunjukkan arah yang sejalan.Kesimpulan: Terdapat hubungan yang bermakna antara ibu hamil dengan KEK terhadap kejadian stunting pada balita usia 24-60 bulan di wilayah kerja Puskesmas Rowokele, terdapat hubungan antara Status KEK ibu hamil dengan Stunting yang berkorelasi sedang dengan arah positif dimana ibu hamil dengan KEK maka besar akan terjadi stunting.Kata Kunci: stunting, Kekurangan Energi Kronis, Ibu hamil KEK