Claim Missing Document
Check
Articles

Found 9 Documents
Search

PENERAPAN SISTEM PAKAR UNTUK MENDETEKSI PENDARAHAN PADA MASA KEHAMILAN Wati, Eka Wajar; Mardiana, Tati
Jurnal Pilar Nusa Mandiri Vol 10 No 1 (2014): Pilar Nusa Mandiri : Journal of Computing and Information System Periode Maret 2
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2506.361 KB)

Abstract

The mortality rate due to births in Indonesia is quite high. One of the biggest complications in pregnancy is bleeding. This is due to the lack of information to pregnant women about the symptoms appear bleeding during pregnancy. Therefore, the need for a system that can help to diagnose the occurrence of bleeding (abortion) in pregnant women based on the symptoms that can be felt that abortion can be prevented as early as possible. The method used in the development of expert systems is divided into two stages: expert knowledge representation and systems development. Development experts conducted to generate a knowledge base of experts in the domain of bleeding problems that occur in pregnancy. Facts or information gathered from five specialist obstetrics and gynecology at the Police Hospitals TK. I R.Said Sukanto. The data obtained from the questionnaire results of five hospital doctors. Bhayangkara kindergarten. IR.Said Sukanto processed with SPSS software with correlation analysis method, wherein the method is to explain the relationship between variables with other variables. Data valid expert questionnaire results converted into a decision table and decision tree using reverse chronological inference method (backward chaining). Based on knowledge representation, expert systems development is then performed using the waterfall model (waterfall), which consists of three stages: analysis and requirements definition, system and software design, implementation and testing of the system. The resulting output diagnostic expert system bleeding during pregnancy is considered quite accurate with 100% precision analysis that can help pregnant women to know the symptoms of bleeding and reduce the number of bleeding during pregnancy.
KOMPARASI METODE KLASIFIKASI PADA ANALISIS SENTIMEN USAHA WARALABA BERDASARKAN DATA TWITTER Mardiana, Tati; Syahreva, Hafiz; Tuslaela, Tuslaela
Jurnal Pilar Nusa Mandiri Vol 15 No 2 (2019): Pilar Nusa Mandiri : Journal of Computing and Information System Periode Septemb
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1039.919 KB) | DOI: 10.33480/pilar.v15i2.752

Abstract

Saat ini usaha waralaba di Indonesia memiliki daya tarik yang relatif tinggi. Namun, para pelaku usaha banyak juga yang mengalami kegagalan. Bagi seseorang yang ingin memulai usaha perlu mempertimbangkan sentimen masyarakat terhadap usaha waralaba. Meskipun demikian, tidak mudah untuk melakukan analisis sentimen karena banyaknya jumlah percakapan di Twitter terkait usaha waralaba dan tidak terstruktur. Tujuan penelitian ini adalah melakukan komparasi akurasi metode Neural Network, K-Nearest Neighbor, Naïve Bayes, Support Vector Machine, dan Decision Tree dalam mengekstraksi atribut pada dokumen atau teks yang berisi komentar untuk mengetahui ekspresi didalamnya dan mengklasifikasikan menjadi komentar positif dan negatif. Penelitian ini menggunakan data realtime dari tweets pada Twitter. Selanjutnya mengolah data tersebut dengan terlebih dulu membersihkannya dari noise dengan menggunakan Phyton. Hasil pengujian dengan confusion matrix diperoleh nilai akurasi Neural Network sebesar 83%, K-Nearest Neighbor sebesar 52%, Support Vector Machine sebesar 83%, dan Decision Tree sebesar 81%. Penelitian ini menunjukkan metode Support Vector Machine dan Neural Network paling baik untuk mengklasifikasikan komentar positif dan negatif terkait usaha waralaba.
SENTIMENT ANALYSIS OF USER REVIEWS BRI MOBILE APPLICATION WITH GRADIENT BOOST METHOD Nanang Ruhyana; Salsabila, Kanita; Agung, Andri; Mardiana, Tati
Jurnal Riset Informatika Vol. 7 No. 2 (2025): Maret 2025
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34288/jri.v7i2.342

Abstract

BRI Mobile application is a digital banking service launched in 2019 by Bank Rakyat Indonesia, which provides facilities such as mobile banking, internet banking, and electronic money. The presence of this application aims to facilitate customers in accessing and managing financial services efficiently through mobile devices. Reviews have become a very important source on platforms such as Google Playstore become a very important source of information to evaluate and improve service quality. However, manually identifying sentiment representations from thousands of reviews is a time-consuming and inefficient process. This research aims to perform sentiment analysis automatically on BRI Mobile application user reviews by utilizing text mining methods. The sentiment classification process is carried out using the Gradient Boosting algorithm approach and initial analysis using the VADER Sentiment method to provide initial data labelling. Based on the classification results, 344 data with positive sentiment, 333 data with negative sentiment, and 333 data with neutral sentiment were obtained. The model built was then evaluated using the accuracy metric, and an accuracy value of 97% was obtained. The results of this research are expected to be a strategic input for application developers in understanding user perceptions more objectively and efficiently.
RANCANG BANGUN SISTEM INFORMASI MANAJEMEN DISTRIBUSI QURBAN Ruhyana, Nanang; Sari, Ani Oktarini; Mardiana, Tati; Bayhaqy, Achmad; Riyadi , Andri Agung; Setiaji, Setiaji
INTI Nusa Mandiri Vol. 20 No. 1 (2025): INTI Periode Agustus 2025
Publisher : Lembaga Penelitian dan Pengabdian Pada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/inti.v20i1.6945

Abstract

One of the most important aspects of Eid al-Adha celebrations is the distribution of sacrificial meat. However, the process of distributing sacrificial meat often faces various challenges, such as inaccurate data collection, difficulty in tracking the amount of sacrificial meat, and a lack of transparency and efficiency. The objective of this study is to design and develop an application that can enhance efficiency, accuracy, and accountability in the distribution of sacrificial meat through the systematic use of information technology. This study employs the waterfall method, which involves several sequential stages: needs analysis, system design, implementation, and testing. This system was developed to support the performance of the sacrificial committee in managing data on sacrificial animals, information on recipients, the distribution process of meat, and the documentation of all activities in a digital and real-time manner. In the user interface (front end), the Next.js/React.js framework is combined with Tailwind CSS to produce a responsive and user-friendly interface. Meanwhile, the server side (back end) was developed using Laravel as a reliable and efficient PHP framework, and MySQL as a database to store all information related to distribution. The result of this research is a web-based application prototype featuring animal sacrifice data collection, beneficiary data recording, and distribution report generation. It is hoped that this application will facilitate more organized and effective distribution of sacrificial meat
Pelatihan Konten Digital Marketing untuk Tingkatkan Customer Engagement UMKM Kopi Goenoeng Berjaya Mardiana, Tati; Elyana, Instianti; Nur Sulistyowati, Daning; Kanaya Salsabila Setiawan; Nur Khofifah; Nakdin Satria Firmansya
Majalah Ilmiah UPI YPTK Vol. 30 (2023) No. 2
Publisher : Universitas Putra Indonesia YPTK Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35134/jmi.v30i2.154

Abstract

Tren pemasaran digital memberikan peluang bagi UMKM untuk beradaptasi di Era Industri 4.0. Pelaku UMKM dapat memanfaatkan saluran media digital untuk mempromosikan produk, jasa, atau merek kepada konsumen. Sebagai bagian dari strategi pemasaran digitalnya, Goenoeng Berjaya menggunakan berbagai platform media sosial seperti Facebook dan Instagram. Untuk meningkatkan keterlibatan pelanggan di media sosial dan mungkin meningkatkan penjualan dan pengenalan merek, Goenoeng Berjaya belum memanfaatkan konten pemasaran digital secara efisien. UMKM harus bekerja keras untuk menciptakan konten yang akan meningkatkan interaksi konsumen dan mengoptimalkan hasil teknik pemasaran digital yang mereka adopsi. Pelatihan ini bertujuan untuk meningkatkan keterampilan Goenoeng Berjaya dalam membuat konten pemasaran digital sehingga dapat membangun keterlibatan pelanggan yang efektif. di media sosial. Metode kegiatan ini mulai dari persiapan dan observasi, pelaksanaan pelatihan, dan evaluasi. Tim pelaksana mempersiapkan tempat pelatihan dan narasumber untuk pelaksanaan kegiatan pelatihan. Selain itu, tim pelaksana melakukan observasi untuk mengidentifikasi permasalahan yang dihadapi UMKM Kopi Goenoeng Berjaya. Pelaksanaan pelatihan ini menggunakan metode ceramah, diskusi dan praktik. Tim Pelaksana menyebarkan kuesioner sebelum dan di akhir kegiatan pelatihan sebagai evaluasi keberhasilan kegiatan pelatihan ini. Hasil dari pelatihan ini, pengetahuan dan keterampilan peserta dalam menghasilkan konten pemasaran digital di media sosial meningkat sebesar 70 persen. Selain itu, program pendampingan masih dilakukan untuk mengawasi produksi dan publikasi formal materi pemasaran digital untuk meningkatkan keterlibatan pelanggan media sosial.
Approaches to Customer Types Classification Method in the Supermarket Nanang Ruhyana; Mardiana, Tati
Jurnal Riset Informatika Vol. 6 No. 1 (2023): December 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1128.804 KB) | DOI: 10.34288/jri.v6i1.269

Abstract

The development of the retail industry in the economy is very rapid so it provides good economic growth, one of the retailers is supermarkets, in supermarkets consumers can buy goods directly, so consumers must be served well. The problem is how supermarkets can continue to increase their sales results, because there is a lot of competition from supermarket competitors, so the marketing team when creating events or promotions must be right on target so that loyalty for member or non-member customers can be measured, which will be used as the right marketing strategy and can increase customer satisfaction when the customer is satisfied with the services, products and promotional activities at the supermarket, the customer will continue to make purchases and will increase the results of achieving good sales. Based on this problem, how will this research apply the classification method, so that when we can make predictions from supermarket sales data for member and non-member customers, there will be a lot of insight for the marketing team, so that marketing activities are right on target for member or non-member customers. This research uses machine learning methods for data classification, using the Support Vector Machine (SVM) and Naïve Bayes algorithms. The results of this research are from the Support Vector Machine (SVM) algorithm. Accuracy is 0.493 while using the Naïve Bayes algorithm is 0.535. From the results of this research, the use of the Naïve Bayes algorithm is better than SVM so that it can approach the prediction of member and non-member customer classification in supermarket data in this research.
Integration of Adasyn Method with Decision Tree Algorithm in Handling Imbalance Class for Loan Status Prediction Ami Rahmawati; Yulianti, Ita; Mardiana, Tati; Pribadi, Denny
Jurnal Riset Informatika Vol. 6 No. 3 (2024): June 2024
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (761.285 KB) | DOI: 10.34288/jri.v6i3.299

Abstract

Determining the provision of credit is generally carried out based on measuring credibility using credit analysis principles (5C principles). However, this method requires quite a long processing time and is very susceptible to subjective judgments which might influence the final results. This research uses data mining techniques by developing modeling on loan status prediction datasets. The stages in this research include data preprocessing, modeling, and evaluation using accuracy metrics and ROC graphs. In this analysis, it is known that there is a class imbalance in the processed dataset, so an oversampling technique must be carried out. This research uses the ADASYN (Adaptive Synthetic) Oversampling technique to ensure the class distribution is more balanced. Then, the ADASYN technique is integrated with the Decision Tree Algorithm to build a prediction model. The research results show that the two methods can increase prediction accuracy by 12.22%, from 73,91% to 85.22%. This improvement was obtained by comparing the accuracy results before and after using the ADASYN Oversampling technique. This finding is important because it proves that implementing such integration modeling can significantly improve the performance of classification models and provide strong potential for practical application in helping more effective loan status predictions.
Workshop Sosial Media Series : Mengambil Data dari Media Sosial Twitter Sari, Ani Oktarini; Setiaji, Setiaji; Mardiana, Tati; Hasanah, Riyan Latifahul
Jurnal Abdimas Perbanas Vol. 5 No. 2 (2024): Jurnal Abdimas Perbanas
Publisher : Institut Keuangan-Perbankan Dan Informatika Asia Perbanas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56174/jap.v5i2.568

Abstract

Social media was designed with the aim of expanding human social interaction using the internet and web technology. The large amount of information available in the public media gives rise to a variety of different opinions. To find out public sentiment on an exclusive topic, sentiment analysis can be carried out by collecting opinion data according to social media users. Therefore, Nusa Mandiri University carries out Community Service in the form of a Social Media Workshop Series: Retrieving Data from Twitter Social Media for JPRMI DKI Jakarta. The method used in this Community Service activity is in the form of interactive training in conveying theory, while the practical method uses simulation and question and answer methods. With this training, JPRMI DKI Jakarta members can help process and display data sourced from social media.
Rancang Bangun Sistem Informasi Penyewaan Camping Ground Berbasis Web Pada Lembah Permai Resor Julianti, Yesi Leony; Mardiana, Tati; Rahmawati, Ami
Jurnal Pariwisata Bisnis Digital dan Manajemen Vol. 1 No. 2 (2022): Jurnal Pariwisata, Bisnis Digital dan Manajemen Periode November 2022
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1406.502 KB) | DOI: 10.33480/jasdim.v1i2.3673

Abstract

Abstrak - Lembah Permai Resor terus berupaya meningkatkan layanan dan standar kualitas untuk penyewaan camping ground dari berbagai sudut, termasuk melalui penggunaan teknologi informasi dan komunikasi. Hingga saat ini, sistem persewaan camping ground di Lembah Permai Resor masih mengandalkan sistem manual untuk pendataan transaksi dan menyelesaikan transaksi. Hal ini menimbulkan masalah karena informasi yang berada di Lembah Permai Resor belum terdistribusi secara merata kepada customer. Maka dari itu sangat diperlukan prosedur dan sistem untuk meningkatkan pemasaran melalui website dan mempermudah parawisatawan dalam melakukan penyewaan. Tujuan penelitian ini yaitu perlu adanya sistem informasi berbasis website yang dapat membantu proses persewaan guna meningkatkan daya saing bisnis dalam menawarkan jasa kepada customer. Dalam penelitian ini menggunakan data kualitatif denganmetode pengumpulan data (observasi, wawancara, dan studi pustaka). Sedangkan model pengembangan sistem yang digunakan adalah model waterfall, UML sebagai toolnya, untuk penggunaan diagramnya yaitu use case diagram, component diagram, class diagaram, activity diagram, sequence diagram. PHP, HTML, dan MySQL dipakai sebagai bahasa pemograman dan database. Metode pengujian black box digunakan untuk menguji rancangan aplikasi sistem informasi penyewaan dan hasilnya sesuai yang diharapkan. Hasil yang dicapai dalam penelitian mengarah pada pembuatan aplikasi sistem informasi persewaan yang seharusnya memudahkan Lembah Permai Resor dalam menjalankan bisnis terkait persewaan.