Bamboo is recognized for its eco-friendly attributes and rapid growth, serves as a promising sustainable alternative to wood. However, the high production cost of laminated bamboo remains a major challenge due to labor-intensive processes, particularly manual splitting, which affects efficiency and labor costs. To overcome this issue, this study presents an automated bamboo diameter measurement system that leverages Canny Edge Detection and Hough Transform to ensure precise and uniform slat dimensions. A dataset of 100 bamboo images with diameters ranging from 11 - 13 cm was utilized for training and testing. The system achieved a high accuracy, with a coefficient of determination (R²) of 0.973, demonstrating strong predictive reliability. Furthermore, Bayesian Optimization was applied to fine-tune parameters, resulting in an optimized configuration for both Canny Edge Detection and Hough Transform. The proposed system reduces dependence on manual labor, thereby lowering production costs and improving overall manufacturing efficiency. Automation in the bamboo splitting process ensures consistent and precise slat dimensions, supporting scalability and enhancing the economic feasibility of laminated bamboo production. The findings of this study provide a practical and sustainable solution to optimize production, making laminated bamboo a more viable and competitive material in the industry.
Copyrights © 2025