CogITo Smart Journal
Vol. 10 No. 2 (2024): Cogito Smart Journal

MRI Image Analysis for Alzheimer’s Disease Detection Using Transfer Learning: VGGNet vs. EfficientNet

Sandag, Green Arther (Unknown)
Djamal, Eleonora (Unknown)
Tangka, George Morris William (Unknown)
Taju, Semmy Wellem (Unknown)



Article Info

Publish Date
31 Dec 2024

Abstract

This study focuses on developing an effective Alzheimer's disease (AD) classification model using MRI images and transfer learning. This research targets individuals aged 65 and above who are affected by the predominant form of dementia and utilizes an Alzheimer's Disease MRI Image dataset from Kaggle. Model selection involved options like EfficientNetB1, B3, B5, B7, VGG16, and VGG19. Two scenarios with distinct batch sizes (10 and 20) were explored in the model creation process. Evaluation, using a confusion matrix, determined that the EfficientNetB5 model yielded the highest accuracy at 99.22%, surpassing other models such as EfficientNetB1, B3, B7, VGG16, and VGG19. Notably, this research highlights the superior performance of EfficientNet over VGGNet in transfer learning for analyzing Alzheimer's disease MRI images. The study concludes with the implementation of a simple web system for testing model outcomes. Overall, the investigation underscores the efficacy of Convolutional Neural Network (CNN) modeling in Alzheimer's disease analysis and identifies EfficientNetB5 as the optimal model for accurate classification.

Copyrights © 2024






Journal Info

Abbrev

cogito

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Education Electrical & Electronics Engineering

Description

CogITo Smart Journal adalah jurnal ilmiah di bidang Ilmu Komputer yang diterbitkan oleh Fakultas Ilmu Komputer Universitas Klabat anggota CORIS (Cooperation Research Inter University) dan IndoCEISS (Indonesian Computer Electronics and Instrumentation Support Society). CogITo Smart Journal dua kali ...