INOVTEK Polbeng - Seri Informatika
Vol. 10 No. 2 (2025): Juli

Detecting Smoking Activity Behavior using YOLOv8 and YOLOv11

Salsabilla Azahra Putri (Unknown)
Murinto (Unknown)
Sunardi (Unknown)



Article Info

Publish Date
11 Jul 2025

Abstract

Smoking behavior in public spaces remains a major challenge in the implementation of public health policies, particularly within designated smoke-free zones. This study aims to examine whether architectural improvements and spatio-temporal modeling in object detection models can enhance the accuracy of real-time smoking behavior detection. Specifically, the performance of YOLOv8 and an experimental version, YOLOv11, is compared using a vision-based approach. A dataset of 3,000 annotated images is used, consisting of smoking and non-smoking activities such as drinking or phone use, with variations in lighting, body posture, and camera angles. The dataset was divided into 80% for training, 20% for validation, and 20% for testing, with data augmentation applied to improve generalization. YOLOv11 incorporates spatio-temporal modules and attention mechanisms not present in YOLOv8. Evaluation results show that YOLOv11 outperforms YOLOv8, achieving a Precision of 0.95, Recall of 0.91, and F1-Score of 0.93, while YOLOv8 reached 0.89, 0.87, and 0.88 respectively. These findings indicate that YOLOv11 offers a more robust and adaptive solution for automatically recognizing smoking behavior in real-world environments and supports the development of intelligent surveillance systems for enforcing smoke-free policies.

Copyrights © 2025






Journal Info

Abbrev

ISI

Publisher

Subject

Computer Science & IT

Description

The Journal of Innovation and Technology (INOVTEK Polbeng—Seri Informatika) is a distinguished publication hosted by the State Polytechnic of Bengkalis. Dedicated to advancing the field of informatics, this scientific research journal serves as a vital platform for academics, researchers, and ...