Abstract. The Corruption Perceptions Index (CPI) is an indicator for assessing the quality of government governance that impacts the economic and environmental sectors. This study uses data from 135 countries in 2022 modeled using beta regression, considering the characteristics of CPI data which are proportions in the range (0,1). The beta regression model uses a logit link function, which connects the mean response (μ) with a linear combination of independent variables to ensure that predictions remain within the (0,1) interval. Parameter estimation is carried out using the Maximum Likelihood Estimation (MLE) method, which is suitable for the beta distribution and allows efficient parameter estimation. The initial model yielded a very low R-squared value of 16.28% and identified 21 outlier observations. After removing these 21 outliers, the revised model achieved an R-squared value of 54.98%, indicating improvement and no further outlier observations detected. The simultaneous test results of the final model concluded that at least one independent variable significantly influences the Corruption Perceptions Index (CPI). In other words, the beta regression model used is statistically significant and appropriate for explaining the variability in CPI. Partial test results show that of the twelve independent variables tested, only four significantly influence CPI at the 5% significance level: population, GNI, GDP, and debt. Keywords: Corruption Perceptions Index, Macroeconomic Factors, Air Pollution, Beta Regression Abstrak. Indeks Persepsi korupsi merupakkan indikator dalam menilai kualitas tata kelola pemerintah yang berdampak pada sektor ekonomi dan lingkungan, dengan menggunakan data dari 135 negara tahun 2022 yang dimodelkan dengan regresi beta mengingat karakteristik data indeks persepsi korupsi yang berupa proporsi dalam rentang (0,1). Model regresi beta menggunakan fungsi hubung logit, yaitu fungsi yang menghubungkan rata-rata respon (μ) dengan kombinasi linier variabel independen agar prediksi tetap berada dalam interval (0,1). Estimasi parameter dilakukan menggunakan metode maximum likelihood estimation (MLE), yang sesuai untuk distribusi beta dan memungkinkan estimasi parameter yang efisien. Model dugaan awal memberikan nilai R-squared sangat kecil yaitu 16,28% dan terdapat 21 observasi yang merupakan outlier. Kemudian dilakukan penghapusan outlier sebanyak 21 observasi dan diperoleh model dugaan nilai R-squared sebesar 54,98% meningkat dari sebelumnya serta dinyatakan tidak ada observasi yang terindikasi outlier. Hasil uji simultan dari model dugaan akhir disimpulkan bahwa minimal terdapat satu variabel independen yang berpengaruh secara signifikan terhadap Indeks Persepsi Korupsi atau Porruption perception Index (CPI). Dengan kata lain, model regresi beta yang digunakan secara keseluruhan signifikan secara statistik dan layak digunakan untuk menjelaskan variabilitas dalam CPI. Hasil uji parsial diperoleh bahwa dari dua belas variabel independen yang diuji, hanya empat variabel yang berpengaruh secara signifikan terhadap CPI pada tingkat signifikansi 5%. Keempat variabel tersebut adalah populasi, GNI, GDP, dan utang(debt). Kata Kunci: Indeks Persepsi Korupsi, Faktor Makro Ekonomi, Polusi Udara, Regresi Beta
Copyrights © 2025